

KLE.Dr.M.S.SHESHGIRI
COLLEGE OF ENGINEERING \& TECHNOLOGY BELAGAVI-08 LIBRARY AND INFORMATION CENTER QUESTION PAPERS
$3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }} \& 8^{\text {th }}$ SEM
CIVIL DECEMBER-2018/JANUARY-2019

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, I.J. Be.e.agavi

USN
 \square
 CRES SCNITMI

 Third Semester B.E. Degree Examination, Decir 1 88dan. 2019 Ergineering Matinemątics - III

17MAT31

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series expansionfor the pericdic function $f(x)$, if in one second

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{lc}
0 ; & -\pi<\mathrm{x}<0 \\
\mathrm{x} ; & 0<\mathrm{x}<\pi
\end{array}\right.
$$

(08 Marks)
b. Expand the function $f(x)=(\pi-x)$ over the interval ($0, \pi$) in half range Fourier cosine series.
c. The following value of function y gives the displaeement in inches of a certain machine part for rotations x of a fyheel. Expand y-in terms of Fourier series upto the second harmonic.

Rotations	x	0	$\pi / 6$	$2 \pi / 6$	$3 \pi / 6$	$4 \pi / 6$	$5 \pi / 6$	π
Displacement	y	0	9.2	14.4	17.8	17.3	11.7	0

(06 Marks)

OR

2 a. Find the Fourier series expansion for the function :
$f(x)=\left\{\begin{array}{cc}\pi x ; & 0 \leq x \leq 1 \\ \pi(2-x) ; & 1 \leq x \leq 2\end{array}\right.$
and deduce $\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
(08 Marks)
b. Expand in Fourier series $f(x)=(\pi-x)^{2}$ over the interval $0 \leq x \leq 2 \pi$.
(06 Marks)
c. The following table gives the variations of periodic current over a period T.

t (secs)	0,	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
A (Amps)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Expand the function (petiodic current) by Fourier series and show that there is a direct current part of 0.75 amp and also obtain amplitude of first harmonic.
(06 Marks)

Module-2

3 a. Find Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2} ; & |x|<1 \\ 0 ; & |x|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x$.
(08 Marks)
b. Find Fourier Cosine transform of the function :

$$
f(x)=\left\{\begin{array}{cc}
4 x ; & 0<x<1 \tag{06Marks}\\
4-x ; & 1<x<4 \\
0 ; & x>4
\end{array}\right.
$$

c. Find z-transforms of: i) $a^{n} \sin n \theta$ ii) $a^{-n} \cos n \theta$.
(06 Marks)

OR

4 a. Find Fourier sine transform of $f(x)=e^{-|x|}$ and hencedeluate : $\int_{0}^{\infty} \frac{x \sin m i x}{1+i^{2}} d x, m>0$
(08 Marks)
b. Find z-transform of $u_{n}=\cosh \left(\frac{n \pi}{2}+\theta\right)$.
(06 Marks)
c. Solve the difference equation using ztransforms $u_{n+2}+6 u_{n+1}+9 u_{n}=2^{n}$. Given $u_{0}=u_{1}=0$.
(06 Marks)

Module-3

5 a. If θ - is the acute angle between the two regression linesirelating the variables x and y, show that $\operatorname{Tan} \theta=\left(\frac{1-r^{2}}{r^{2}}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2} \sigma_{y}^{2}}\right)$.
(08 Marks)
Indicate the significance of the cases $\mathrm{r}= \pm 1$ and $\mathrm{r}=0$.
b. Fit a straight line $y=a x+b$ for the data

x	12	15	21	25
y	50	70	100	120

c. Find a real root of the equation by using Newton-Raphison method near $x=0.5, \mathrm{xe}^{\mathrm{x}}=2$, perform three iterations.
(06 Marks)
a. Compute the coefficient of correlation and equation of regression of lines for the data :

x	1	2	3	4	5	6	4
y	9	8	10	12	11	13	14

b. The Growth of an organism after x - hours is given in the following table :

x (hours),	5	15	20	30	35	40
y (Growth)	10	14	25	40	50	62

Find the best values of a and b in the formula $y=a e^{b x}$ to fit this data.
(06 Marks)
c. Find a real root of he equation $\cos x=3 x-1$ correct to three decimals by using Regula False position method, given that root lies in between 0.6 and 0.7. Perform three iterations.
(06 Marks)

Module-4

7 a. Find $y(8)$ from $y(1)=24, y(3)=120, y(5)=336, y(7)=720$ by using Newton's backward difference interpolation formula.
(08 Marks)
b. Define $f(x)$ - as a polynomíal in x for the following data using Newton's divided difference formula.
(06 Marks)

x	-4	-1	0	2	5
$f(x)$	1245	33	5	9	1335

c. Evaluate the integral $\mathrm{I}=\int_{0}^{6} \frac{\mathrm{dx}}{4 \mathrm{x}+5}$ using Simpson's $\frac{1}{3}$ rd rule using 7 ordinates.
(06 Marks)

OR

17MAT31

8 a. For the following data calculate the differences and obtain backward difference interpolation polynomial. Hence find $f(0.35)$.
(08 Marts)

x	0.1	0.2	0.3	0.4	0.5
$\mathrm{f}(\mathrm{x})$	1.40	1.56	1.76	2.0	2.28

b. Using Lagrange's interpolation find y when $x=10$.

x	5	6	9	11
y	12	13	14	16

(06 Marks)
c. Evaluate $\int_{0}^{1} \frac{x}{1+x^{2}} d x$ by Weddle's rule considering seven ordinates.
(06 Marks)

Module-5

9 a. Verify the Green's theorem in the plane for $\int_{c}\left(x^{2}+y^{2}\right) d x+3 x^{2} y d y$ where C - is the circle $x^{2}+y^{2}=4$ traced in positive sense.
(08 Marks)
b. Evaluate $\int_{\mathcal{C}}(\sin z . d x-\cos x d y+\sin y d x)$ by using Stokes theorem, where $C-$ is the boundary of the rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1$ and $z=3$.
(06 Marks)
c. Find the curve on which the functional : $\int_{0}^{1}\left[y^{\prime 2}+12 x y\right] d x$ with $y(0)=0 . y(1)=1$ can be extremised.
(06 Marks)

OR

10 a. Given $f=\left(3 x^{2}-y\right) i+x z j+(y z-x) k$ evaluate $\int_{c} f \cdot d r$ from $(0.0 .0)$ to (1.1.1) along the paths $x=t, y=t^{2}$ and $z=t^{3}$.
(08 Marks)
b. Derive Euler's equation in the: form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
(06 Marks)
c. Prove that the shortest distance between two points in a plane is a straight line.

17MATDIP31

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Additional Mathematics - I

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Frove that $(1+\cos \theta+i \sin \theta)^{+}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+}+\cos ^{n}\left(\frac{\theta}{2}\right) \cos \left(\frac{n \theta}{2}\right)$
(08 Marks)
b. Express $\sqrt{3}+i$ in the pola form and hence find its modulus and amplitude.
(06 Marks)
c. Find the sine of the ader between vectors $\bar{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+2 \hat{k}$
(06 Marks)

2 a. Express $\frac{3+4 i}{3-4 i}$ in the form $x+i y$.

(08 Marks)
b. If tie vector $2 \hat{i}+\lambda \hat{j}+\hat{k}=0$ and $4 \hat{i}-2 \hat{i}-2 \hat{k}$ are perpendicular to each other. find λ.
c. Find λ, such that the vectors $2 \hat{i}-2 \hat{i}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}, 3 \hat{i}+\lambda \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$ are coplanar. (06 Marks)

Module-2

3 a. If $y=e^{2 \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-\left(2 n+y^{1}\right) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$
(08 Marks)
b. With usual notations, prove that $\tan \phi=\mathrm{r} \frac{d \theta}{d \mathrm{f}}$.
(06 Marks)
c. If $u=\log _{e} \frac{x^{4}+\frac{y^{3}}{x^{2}}+y^{2}}{}$, prove that $\frac{x u}{\partial x}+y \frac{\partial u}{\partial y}=1$.
(06 Marks)

4 a. Using Maclaurin's series, expand $\tan x$ upto the term containing x^{5}.
(08 Marks)
b. Find the pedal equation $\sigma f=a(1-\cos \theta)$.
(06 Marks)
of $u=x+3 y^{2}-r^{3}+4 x^{2} y z$ and $w=2 z^{2}-x y$, find $\frac{\partial(u, v, x)}{\partial(x, y, z)}$ at $(1,-1,0)$.
(06 Marks)

5 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} d x$
(06 Marks)
c. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$
(06 Marks)

OR

6 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$
(08 Marks)
b. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$

c. Evaluate $\int_{-1}^{1} \int_{0}^{x+z} \int_{x-z}^{x+y}(x+y) d x d y d z$

Module-4

 Find its velocity and accelrition vectors and also magnitude of velocity and acceleration at $t=1$.
(08 Marks)
b. In which direction of di te directional derivative $\operatorname{cox}^{2} \mathrm{yz}^{3}$ is maximum at $(2,1,-1)$ and find the magnitude of is maximum.
(06 Marks)
c. Show that $\overrightarrow{\mathrm{F}}=\mathrm{e}+\mathrm{z}) \hat{\mathrm{i}}+(\mathrm{x}+\mathrm{z}) \hat{\mathrm{j}}+\left(\mathrm{x}+\mathrm{y}_{\mathrm{p}}\right)$ is rotational.
(06 Marks)

8 a. If $\phi=x y^{2} \omega_{4}^{3}-x^{3} y^{2} z$, find $\nabla \phi$ and $|\nabla \phi|$ OR $(1,-1,1)$.
(08 Marks)
b. If $\overrightarrow{\mathrm{F}}=(x+y+1) \hat{i}+\hat{j}-(x+y) k$, show that $\vec{F} \cdot C u f+{ }^{t}=0$.
(06 Marks)
c. If $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$ represents the parametric equation of a curve, find the angle between the tangents th t $t=1$ and $t=2$.
(06 Marks)

Module -5

9 a. Solve : $\left(x \tan \frac{y}{x^{x}-\frac{y}{x}} \sec ^{2} \frac{y}{x}\right) d x=x \sec ^{2} \frac{y}{x} d y$
(08 Marks)
b. Solve : $x y\left(l+x y^{2}\right) \frac{d y}{d x}=1$
c. Solve : $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$
(06 Marks)
(06 Marks)

10 a. Solve : $(3 y+2 x-4) d x-(4 x+6 y+5) d y=0$
(08 Marks)
b. Solve : $(1+y) d x=\left(\tan ^{-1} y-x\right) d y$
(06 Marks)
c. Solve : $(y \log y) d x+(x-\log x) d y=0$.
(06 Marks)

17CV32

Third Semester B.E. Degree Examination, Dec. $20 \mathrm{f} 8 /$ Jan 2019 Strength of Materials

Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Show that volumetric strain is equal to algebraic sum of the strains in three mutually perpendicular directions in case of cubeid.
(05 Marks)
b. Calculate the diameter of steel rod needed to carry a load of 8 kN , if the extension is not to exceed 0.04 percent. Assume $\mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2}$.
(05 Marks)
c. A reinforced concrete column $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ in size has 4 reinforcement bars of steel 20 mm in diameter. Calculate the safe load, the column can carry if the permissible stress in concrete is $5.2 \mathrm{MN} / \mathrm{m}^{2}, \mathrm{E}_{\text {conel }}=18$.
(10 Marks)

OR

2 a. Derive an expression for change in length in case of a uniformly varying circular cross section whose diameter varies from d_{1} to d_{2} over a length ' L ' subjected to an axial force F.
(06 Marks)
b. A rod $A \leq 2 \mathrm{~m}$ long at a temperature of $10^{\circ} \mathrm{C}$. Find the expansion of the rod when the temperature is raised to $80^{\circ} \mathrm{C}$. If this expansion is prevented, find the stress induced in the material of the rod. Take $\mathrm{E}=1.0 \times 10^{5} \mathrm{MPa}$ and $\alpha=12 \times 10^{-6} /^{\circ} \mathrm{C}$.
(05 Marks)
c. A bar of cross section $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ is subjected to an axial pull of 8000 N . The lateral dimension of the bar is found to be changed to $9.9985 \mathrm{~mm} \times 9.9985 \mathrm{~mm}$. If the modulus of rigidity is $0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine the Poisson's ratio and modulus of elasticity.
(09 Marks)

Module-2

3 a. Derive expressions for hoop stress and longitudinal stress in case of thin cylinder. (08 Marks)
b. At a point in a strained material the stresses acting are as shown in Fig. Q3 (b). Determine the (i) Principal stresses and their planes (ii) Maximum shear stress and their planes
(iii) Nomal and shear stresses on the inclined plane AB.
(12 Marks)

4 a. At a point in a strained material the normal stresses are σ_{x} and σ_{y} which are tensile in nature and shear stress acting is τ_{xy}, derive expressions for normal stress and shear stress on an inclined planemaking an angle ' θ ' with the vertical plane.
(10 Marks)
b. The inside diameter of thick cylinder is 200 mm . If the internal pressure is $8 \mathrm{~N} / \mathrm{mm}^{2}$ and maximum permissible stress in cylinder wall is $20 \mathrm{~N} / \mathrm{mm}^{2}$, what is the minimum thickness required. If the internal pressure is to be increased to $12 \mathrm{~N} / \mathrm{mm}^{2}$ without exceeding maximum stress, what is the external pressure to be applied?
(10 Marks)

Module-3

a. A cantilever of length ' l ' is subjected to a load intensity of w / m at fixed end, uniformly varying to zero at free end. Considering a section ' X ' at a distance ' x ' from free end, write shear force and berding moment equations and using them draw shear force diagram and bending moment diagram.
(10 Marks)
b. Draw shear force d agram and bending moment diagram for the Cantilever beam shown in Fig. Q5 (b).
(10 Marks)

OR
Fig. Q5 (b)
6
a. What is Pare bending? Explain with examples.
(05 Marks)
b. Draw shear force diagram and bending moment diagram for the beam shown in Fig. Q6 (b).

(15 Marks)

Fig. Q6 (b)
7 a. Explain maximum strain energy theory (Beltrami and Haigh).
(05 Marks)
b. Derive the expression for power transmitted by the shaft.
(05 Marks)
c. A solid shaft has to transmit 120 kW of power at 160 rpm . If the shear stress is not to exceed 60 MPa and the twist in a length of 3 m must not exceed 1°, find the suitable diameter of the shaft. $G=80 \mathrm{GPa}$.
(10 Marks)
8 a. Derive with usual notations the torsion equation,
$\frac{\mathrm{T}}{\mathrm{J}}=\frac{\tau_{\text {max }}}{\mathrm{R}}=\frac{\mathrm{G}_{0}}{\mathrm{~L}}$

OR

b. The cross section of a belt is required to resist an axial tension of 15 kN and a transverse shear of 15 kN . Estimate the diameter of the bolt by (i) Maximum principal stress theory and (ii) Maximur shear stress theory. The elastic limit of the material is $300 \mathrm{~N} / \mathrm{mm}^{2}$. Poisson's ratio $=0.2 .5$ and factor of safety $=3$.
(10 Marks)

Module-5

9 a. Derive Euler's cripp ling load when both ends of column are hinged.
(06 Marks)
b. A horizontal beam of the section shown in Fig. Q9 (b) is 4 m long and is simply supported at the ends. Find the maximum uniformly distributed load it can carry if the compressive and tensile stresses are not te exceed 60 MPa and 30 MPa respectively.
(14 Marks)

Fig. Q9 (b)
a. Define : (i) Neutral axis

OR
(iii) Flexural rigidity
(ii) Section modulus
(iv) Moment of resistance
(08 Marks)
b. Compare the crippling loads as found from Euler's and Rankine's formula for a mild steel tube of length 3 m , of internal diameter 5 cm and thickness of metal 0.25 cm . Both ends are pin jointed. $\mathrm{E}=2.1 \times 10^{2} \mathrm{KN} / \mathrm{mm}^{2}$. Take $\alpha=\frac{1}{7500}, \sigma_{\mathrm{C}}=300 \mathrm{~N} / \mathrm{mm}^{2}$.
(12 Marks)

USN

17CV33

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Fluid Mechanics

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.
 Module-1

1 a. Define the term 'fluid'. Distinguish between liquid and gases.
(06 Marks)
b. Derive the expression for surfage tension on a liquid droplet.
(06 Marks)
c. The dynamic viscosity of of oil, used for lubrication between a shaft and sleeve is $0.6 \mathrm{Ns} / \mathrm{m}^{2}$. The shaft diameter is $0,4 \mathrm{~m}$ and rotates at 190 rpm . Calculate the power lost in the bearing a sleeve length of 90 mm . Take the thickness of the 0 A film as 1.5 mm .
(08 Marks)

OR

2 a. Explain the wotking of a Bourdon's pressare gauge with a diagram.
(06 Marks)
b. State and pueve Pascal's law.
(08 Marks)
c. A differential manometer is connected at the two points \mathbf{A} and B of two pipes as shown in Fig. Q. 2 (c). The pipe A contains a tiquid of sp.gr $=15$ while pipe B contains a liquid of sp.gr $=0.9$. The pressures at A and B are $9.81 \times 10^{4} \mathrm{Nam}^{2}$ and $17.65 \mathrm{~N} / \mathrm{m}^{2}$ respectively. Find the difference in mercury level in the differential nanometer.
(06 Marks)

3 a. Define: i) Total pressure ii) Centre of pressure.
Module-2
(04 Marks)
b. Derive the expression for the fotal pressure and center of pressure on a vertically immersed plane surface.
(08 Marks)
c. The velocity potential function $\phi=\frac{-x^{3}}{3}-x^{2}+x^{3} y+y^{2}$.
i) Find the velacity component in x and y directions.
ii) Show thate ϕ fepresents a possible case of fluid flow.
(08 Marks)

OR

4 a. Derive continuity equation in Cartesian coordinates for 3 dinensional flow.
(08 Marks)
b. A rectangular plane surface 1 m wide and 3 m deep lies in water in such a way that its plane makes an angle of 30° with the free surface of water. Determine the total pressure and the depth of center of pressure when the upper edge of the plate is 2 m below the free surface.
(06 Marks)
c. What is flownet? The stream function for atwo dimensional flow is given by $\psi=2 x y$. Find the velocity potent al function ' ϕ '.
(06 Marks)

Module-3

5 a. State the assumptions made in deriving the Euler's equatiph of motion. Hence obtain Bernoulli's equation from Euletis equation with a neat skethe.
(10 Marks)
b. A pipe of diameter 400 mm cathes water at a velocity of $25 \mathrm{~m} / \mathrm{s}$. The pressure at the points A and B are given as $29.43 \mathrm{~N} \mathrm{~cm}^{2}$ and $22.563 \mathrm{~N} / \mathrm{cm}^{2}$ respectively, while the datum head at A and B are 28 m and 30 m . Find the loss of head between A and B.
(05 Marks)
c. Show that for a pitor tube actual velocity $V=C_{3} \sqrt{\mathrm{yh}}$ with usual notations.
(05 Marks)

6 a. Derive the equation for discharge through a venturimeter.
(08 Marks)
b. Water flow at the rate of $0.147 \mathrm{~m}^{3} / \mathrm{s}$ through a 150 mm diameter orifice inserted in a 300 mm diameter pipe. If the pressure gauges fitted upstream and down stream of the orifice plate have shown readings of $176.58 \mathrm{kN} / \mathrm{m}^{2}$ and $88.29 \mathrm{kN} / \mathrm{m}^{2}$ respectively, find the coefficient of discharge ' C ' of the orifice meter.
(05 Marks)
c. A 45° reducing bend is connected in a pipe lipe, the diameters at the mlet and outlet of the bend being 600 mm and 300 mm respectively. Find the force exerted by water on the bend if the pressure intensity at the inlet to the bend As $8.829 \mathrm{~N} / \mathrm{cm}^{2}$ and rate of flow of water is 600 lit/sec.

Module-4
(07 Marks)

7 a. Define hydraulic coefficient Ce, Cv and Cd for anorifice and obtain the relation between them.
b. Derive the expression of discharge through a triangular notch.
(08 Marks)
(08 Marks)
c. Find the discharge overa Cipolletti weir of length 2.0 m when the head over the weir is 1 m . Take $\mathrm{C}_{\mathrm{d}}=0.62$.

(04 Marks)

a. What are the advantages of trianglar notch over rectangular notch? How do you classify mouth pieces?
(06 Marks)
b. A jet of water, issu ng from a sharp-edged vertical orifice under a constant head of 10.0 cm at a certain point, has the horizontal and vertical coordinates measured from the Vena-Contracta as 20.0 cm and 10.5 cm respectively. Find the value of C_{v}. Also find the value of C_{c} if $\mathrm{C}_{\mathrm{d}}=3.60$.
(06 Marks)
c. What is broad crested weir? Show that under maximum discharge conditions $h=2 / 3 \mathrm{H}$ with usual notations for a broad crested weir.
(08 Marks)

Module-5

9 a. Derive Darcy's equation for head loss through pipes.

b. Explain: i) Pipes in parallel ii) Pipes in series.
c. The rate of water flow of water through a horizontâl pipe is $0.025 \mathrm{~m}^{3} / \mathrm{s}$. The diameter of the pipe which is 200 mm is suddenly enlarged to 4000 mm . The pressure intensity in the smaller pipe is $11.772 \mathrm{~N} / \mathrm{cm}^{2}$. Compute:
i) Loss of head due to sudden enlargentient
ii) Pressure intensity in the large pipe
(08 Marks)
a. Explain the terms:
i) Hydraulic gradient and
ii) Total energy line.
(04 Marks)
b. Derive the expression foresters loss due to sudden closure of the valve when the pile is elastic.
(08 Marks)
c. For a pipe network shown in Fig.Q.10(c) find the Iow in each pipe. The valve of ' n ' mg / c assumed as 2.0.
(08 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, Belagavi

USN

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Surveying

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define surveying. Enumerate the applications of surveying.
(10 Marks)
b. Discuss the classification of surveying.
(10 Marks)

OR

2 a. Explain Indirect method of ranging with a sketch.
(10 Marks)
b. A big pond obstructs the chain line $A B$. A line $A L$ was measured on the left of the line $A B$ for circumventing the obstacle. The length of AL was 901 m . Similarly the line AM was measured on the right of the line AB whose length was 1100 m . Points M. B, L are in straight line. Length's of the links BL and BM are 502 m and 548 m respectively. Find the distance $A B$.
(10 Marks)

Module-2

3 a. Distinguish between:
i) True meridian and magnetic meridian
ii) Whole Circle bearing and Quandrantal bearing:
(05 Marks)
b. A closed compass transverse ABCDEA was conducted round a forest and the following bearings were observed with a compass. Calculate the interior angles. Apply check and plot the transverse (not to scale).

Line	$\AA \mathrm{AB}$	BC	CD	DE	EA
Fore bearing	$60^{\circ} 30^{\prime}$	$122^{\circ} 00^{\prime}$	$46^{\circ} 00^{\prime}$	$205^{\circ} 30^{\prime}$	$300^{\circ} 00^{\prime}$

(10 Marks)
c. The magnetic bearing of a line was found to be $\mathrm{N} 60^{\circ} 30^{\prime} \mathrm{W}$ in 2002 , when the declination was $5^{\circ} 10^{\prime} \mathrm{E}$. Find its present magnetic bearing, if declination is $3^{\circ} \mathrm{W}$.
(05 Marks)

OR

4 a. Explain briefly the applications of thedolite.
(08 Marks)
b. Explain the repetition method of measuring the horizontal angle using transit thedolite and errors eliminated by that method.
(12 Marks)

Module-3

5 a. What is meant by balancing of traverse? Explain the Bowditch method of adjusting the traverse.
(10 Marks)
b. A tacheometer, fitted with an analectic lens and having the multiplying constant 100 , was set up at station C to determine the gradient between two points A and B and the following observations were taken keeping the staff vertical.

Staff $@$	Vertical angle	Stadia readings
A	$4^{\circ} 20^{\prime} 0^{\prime \prime}$	$1.300,1.610,1.920$
B	$0^{\circ} 10^{\prime} 40^{\prime \prime}$	$1.100,1.410,1.720$

If the horizontal angle ACB is $35^{\circ} 20^{\prime}$ determine the gradient between A and B .
(10 Marks)

OR

6 a. Derive the distance and elevation formulae for stadia techeometry, when the staff is held vertical and the line of sight being inclined upwards and downwards.
(08 Marks)
b. Describe the closing error in a compass traverse. Explain how the closing error is adjusted by transit rule.
(06 Marks)
c. The bearings of PQ and QR are $18^{\circ} 36^{\prime}$ and $60^{\circ} 24^{\prime}$ respectively. The coordinated of the ends P and R are:

Point	North coordinate	East Coordinate
P	300.0	400.0
R	1432.8	1257.2

Find the length of $P Q$ and $Q R$.
(06 Marks)

Module-4

7 a. Explain the effects of curvature and refraction in leveling.
(08 Marks)
b. The following observations were made on a hill top to ascertain its elevation. The height of the target F was 5 m .

Instrument Station	Staff reading on BM	Vertical Angle	Remarks
	2.550	$18^{\circ} 6^{\prime}$	RL of
O_{2}	1.670	$28^{\circ} 42^{\prime}$	$\mathrm{BM}=345.58$

The instrument station were 100 M apart and wave in line with ' F '.
(12 Marks)

8 a. The following consecutive readings were taken with a dumpy level and 4 m leveling staff on a continuously slopping ground at a common interval of $30 \mathrm{~m}: ~ 0.415,1.025,2.085,2.925$, $3.620,0.715,2.115,3.090 .0 .405,1.525,2.005,3.650$. The first point was 185.575 M above MSL. Rule out a page of level book and enter the readings. Calculate the reduced levels of all the points by "Height of instrument method". Also calculate the gradient of line joining first and last points.
(10 Marks)
b. Derive the expressions for the horizontal distance, vertical distance and the elevation of an elevated object, when the base is inaccessible and instrument stations are not in the same vertical plane with the object.
(10 Marks)

Module-5

9 a. The following perpendicular offsets were taken from a chain line to an irregular boundary

Chainage	0	10	20	30	40	50	60	70
Off set	14.2	28.5	35.8	30.6	29.0	27.6	33.5	26.0

Compute the area of by: i) Mid ordinate rule (ii) Trapezoidal rule (iii) Simpson's rule
b. Write short notes on digital planimeter.
(12 Marks)
(08 Marks)

OR

10 a. Describe the different characteristics of contours.
(08 Marks)
b. Explain the interpolation of contours. List the methods of contouring.
(04 Marks)
c. A road embankment is 30 m wide at the top with side slopes of $2: 1$. The ground levels at 100 m intervals along a line AB are as under: A $170.30,169.10,168.50,168.10,166.50 \mathrm{~B}$. The formation level at ' A ' is 178.70 M with uniform falling ground of 1 in 50 from ' A ' to ' B '. Determine the solume of earthwork by prismoidal formula. Assume the ground to be in cross-section.
(08 Marks)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Geology

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Describe the role of geology in the Civil Engineering Projects.
(06 Marks)
b. With neat sketch, explain the different zones of the inferior of the EARTH.
(06 Marks)
c. Define a mineral with examples. Describe the following physical properties of minerals :
i) Lustre
ii) Cleavage.
(08 Marks)

OR
2 Describe how the physical properties are helpfut in their identification of minerals in the field with examples.
(20 Marks)
a. What are Rocks? Based on their origin, how the rocks have been classified and how are they formed with examples.
(04 Marks)
b. With the help of neat sketches, describe the forms of igneous rocks.
(08 Marks)
c. Describe any two rocks their geological properties and add their engintering uses :
i) Granite
ii) Sand stone
iii) Marble.
(08 Marks)
OR
4 What are folds? Howare they caused? With neat sketch, mention the parts of the fold. Describe the different types of folds with figutes. Also add a note on their civil engineering considerations.
(20 Marks)

Module-3

5 a. Whates Weathering? Describe the mechanical and chemical weathering.
(10 Marks)
b. Give detailed account of geølogical work done by rivers.
(10 Marks)

OR

6 a. What is an Earthquake? Describe the tectonic causes of earthquake and write note on the effects of earthquăkes.
(10 Marks)
b. Write noteon câuses of landslides.
(05 Marks)
c. Write brief note on coastal land forms.
(05 Marks)

Module-4

7 a. Define Ground water. Describe the hydrological cycle. Explain the factors influencing the surface runoff and infilfration.
(10 Marks)
b. Discuss the ground water survey by Electrical Resistivity method, with a circuit diagram.
(10 Marks)

OR

8 Write notes on :
a. Water table and perched water table.
b. Aquifer and its types.
c. Specific yield and retention.
d. Porosity and Permeability.

(20 Marks)
Module-5
9 a. What is Remote Sensing? Write its application in Civil Engineering.
(08 Marks)
b. What is Geographical Information System? Name the differenteomponents of Geographical Information System.
(06 Marks)
c. Write a note on Application of Global Positioning System (GPS) in Civil Engineering.
(06 Marks)

OR

10 Write a note on :
a. Impact of Minin , Cuarring on Environment
(10 Marks)
b. Natural disasters and their mitigation.
(10 Marks)

5

-

-

17 CV 36

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Building Materials and Construction

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Mpdule-1

1 a. Explain physical and chemical classification of rocks.
(08 Marks)
b. List and explain Laboratory tests on bricks.

(06 Marks)
c. Explain bulking of sand.
(06 Marks)

OR

2 a. Which are the constitients of good brick earth? Explain.
(06 Marks)
b. What is Quarrying efstone? Explain methods of Quarrying.
(08 Marks)
c. Explain the importance of shape, size and texture of coarse aggregates in cement concrete making.
(06 Marks)

Mbdule-2

3 a. What is foundation? Explain the functions of foundation.
(06 Marks)
b. Explain strip footing and strap footing with sketches.
(06 Marks)
c. What are the special features of English bond? Explain with I $1 / 2$ brick thick wall.
(08 Marks)

OR

4 a. What is pile foundation? Explain with sketches the classification of pile foundation based on its function.
(06 Marks)
b. Differentiate between Random rubble masoñry and coursed rubble masonry. (06 Marks)
c. Draw the planof $4 / 2$ brick thick Flemish bond and explain tis salient features.
(08 Marks)

Module-3

5 a. Explain the following with sketches:
(i) RCC lintel
(ii) Stene lintel.
4
(06 Marks)
b. Discuss various modes of failure of an arch and what are its remedies?
(06 Marks)
c. Draw the sketch of king post wooden roof trass (half part) and label its parts.
(08 Marks) 4 wim

6 a. Mention the types of sloped roof. Explain any three types of sloped roof with sketches.
b. What are the requirements of good floor? What are the components of ground
(08 Marks) mosaic flooring?
floor with
c. What is an arch? Draw the sketch of elemental arch.
(06 Marks)

7 a. Explain salient features of framed and panelled door with sketch (Double shutter). (08 Marks)
b. Differentiate between Bay window and corner window with sketches.
(06 Marks)
c. What are the requirements of good stair?

OR

8 a. Design a stair-case for a residential building using stair hall $2.5 \mathrm{~m} \times 5 \mathrm{~m}$. The vertical distance between the floors is 3.6 m . Sketch the plan ofstaircase.
b. What is shoring? Explain Raking shore with a sketch
c. What are the requirements of locating door and windows?

Modille-5

9 a. Discuss the defects in plastering.
b. Name and explain the constituents of oil paint.
(08 Marks)
(06 Marks)
(06 Marks)

OR

(08 Marks)
b. Explain the procedure of painting for the following :
(i) New wood work surface
(ii) New plastered sufface
(06 Marks)
c. Differentiate betwean stucco plastering and lathe plastering.

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Mathematics - IV

Time: 3 hrs .

Note: Answer any fie full questions, choosing ONE fultquestion from each module.

Max. Marks: 80

1 a. Using Taylor's series methof solve $\frac{d y}{d x}=x^{2}+y^{2} y(0)=1$ and hence find $y^{\prime}(0.1)$ and consider upto $3^{\text {rd }}$ degreet
(06 Marks)
b. Using modified Fule's method solve $\frac{d y}{d x}=1+\frac{y}{x}$ with $y(1)=2$ then find $y(1.2)$ in two steps. (05 Marks)
c. Given $\frac{d x}{d x} \frac{x+y}{2}$, give that $y(0)=2, y(0.5)=2.636, y(1)=3.595$ and $y(1.5)=4.968$ then find of y at $x=2$ using Mifnes predictor and conetor formulae.
(05 Marks)

OR

2 a. Using modified Eulef's method solve $\frac{d y}{d x}=x+\sqrt{y}$, with $(0)=1$ then find $y(0.2)$ with $\mathrm{h}=0.2$.
(06 Marks)
b. Solve $\frac{d y}{d x}=\frac{y-x}{y+x}$, with $y(0)=1$ hand hence find $y(0.1)$ by taking one steps using RungeKutta thellod of fourth ordef
(05 Marks)
c. Given $\frac{d y}{d x}=\frac{\left(1+x^{2}\right) y^{2}}{2}$, $y(0)=1, y(0.1)=1.06 . y(0.2)=1.12$ and $y(0.3)=1.21$ then evaluate $y(0.4)$ wsing Adam's - Bash forth method.
(05 Marks)

3 a. Given $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{2 \mathrm{dy}}{\mathrm{dx}}-\mathrm{y}$, y(9) $\bar{y} 1, \mathrm{y}^{\prime}(0)=2$, evaluate $\mathrm{y}(0.1)$ and $\mathrm{y}^{\prime}(0.1)$ using Runge-Kutta method of fourth order.
(6: Marks)

(05 Marks)
c. Express $\mathrm{x}^{3}+2 \mathrm{x}^{2}-4 \mathrm{x}+5$ in terms of Legendre polynomials.

OR

4
a. Using Milne's method. obtain an approximate solution at the point $x=0.8$ of the problem $\frac{d^{2} y}{d x^{2}}=1-2 y \frac{d y}{d x}$ using the following data :

(06 Marks)
b. If α and $\dot{\beta}$ are two distinct goots of $J_{n}(x)=0$ then $P-T \int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=\{0$ if $\alpha \neq \beta$.
(05 Marks)
c. With usual notation irove that $J+\frac{1}{2}(x)=\sqrt{\frac{2}{a n}} \sin x$.
(05 Marks)

Modüle-3

5 a. Stateand prove Cauchy-Riemanf equation in Cartesiantam.
(06 Marks)
b. Find analytic function $f(z)$ whose maginary part is $\left.v=\frac{1}{r}\right) \sin \theta$.
c. Discuss the transformation $\mathrm{of}_{2} \omega=\mathrm{e}^{\mathrm{z}}$.

OR

(05 Marks)
(05 Marks)
(06 Marks)
b. Emulate $\oint \frac{1 z}{(z+1)(z-2)} d z$ where $\sin ^{2} z=3$ using Cauclfy's residue theorem.
(05 Marks)
c. Find the bfinear transformafanin maps $z=\frac{4}{4}, 1$ into $\omega=0, i, 3 i$.
(05 Marks)

$\frac{\text { Module-4 }}{4}$

7 d.
(06 Marks)
b. A random variablex. . . as the following probability mass function.

i) find $k \quad$ ii) find $p(x<3)$
iii) find $p(3<x \leq 5)$.
(05 Marks)
c. The joint distribution of tuy random variable x and y as follows:

x	-4	2	7
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
5	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

Compute i) $E(x)$ and $E(y)$ ii) $E(x y)$ iii) $\operatorname{cov}(x y)$.
(05 Marks)

8 a. 2% of the fuses manufactured by a firm are found defective. Find the probability that a box containing 200 fuses contains. i) no defective fuses ii) 3 or more defective fuses. (06 Marks)
b. In a test on 2000 electric bulbs. It was found that the life of a particular brand was distributed normally with an average life of 204 hours and S.D 60 hours. Estimate the number of bulbs likely to burn $(\mathrm{P}(0<\mathrm{z}<1.83)+0.4664 \mathrm{P}(1.33)=0.4082, \mathrm{P}(2)=0.4772)$ i) more than 2150 ii) less than 1960 iii) mote than 1920 but less than 2160 hours. (05 Marks)
c. The joint probability distribution of tuferandom variable X and , given by the following table:

(05 Marks)
Find margingistribution of X and Y andevaluate $\operatorname{cov}(\mathrm{XY})$.

Module-5

9 a. Define: i) Null hypothesis ii) significance level iff Type-l and Type 4 error. (06 Marks)
b. Ten individual are chosen random from a popthation and their beight in inches are found to be $63,63,66,67,66,69,70,70.71,7 .{ }^{2}$ Test the hypothesis that mean height of the universe is 66 inches. Given that $\left(\mathrm{t}_{0.05}=2262\right.$ for 9 d . $)$
(05 Marks)
c. Find the unique fiyed probability vector forthe regular stoehastic matrix :

$A=$

 co ${ }^{\circ}$ is unbiased ${ }^{2}$

(05 Marks)
b. Four coins afe tessed i00 timesand ollowing results were obtained :

No. of heads	0	1	2	3	4
Flequency	5	29	36	25	5

Fit a binomial distributior for the data and test the grodness of fit $\left(\chi_{0 . v^{5}}^{2}=9.49\right)$. (u5 Ma.ks)
c. A student's study habit are as follows. If he studies one night, he is 70% sure not to study the next night. © Whe other hand if he does not stud; one night itic is 60% sure not to study the next night. th the long run how often does he study?
(05 Marks)

KLE. Dr. M.S. Sheshgiri College of Engineering \& Technolog, L.J. Belagavi

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, L.J. Belagavi

USN

15MATDIP41

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Additional Mathematics - II

Time: 3 hrs .
Note: Answer any FIVE full questio:s, choosing one jull question from each module.

Module- 1

1 a. Find the rank of matrix $\mathrm{A}=$
b. Solve by Gauss elimination method:
$2 x+y+4 z=12 \quad 4 x+11 y-z=33$
$8 x-3 y+2 z=20$
(05 Marks)
c. Find all the eigen yatioes of the matrix

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

(06 Marks)

OR

2 a. Find the values of K, such that the matrix A may have the rank equal to 3:

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & K \\
1 & 4 & 10 & K^{2}
\end{array}\right]
$$

(05 Marks)
b. Solve by Gauss elimination method

$$
x_{1}-2 x_{2}+3 x_{3}=2 \quad 3 x_{1}-x_{2}+4 x_{3}=4 \quad 2 x_{1}+x_{2}-2 x_{3}=5
$$

(05 Marks)
c. Find all the eigen values and corresponding eigen vectors of the matrix

$$
A=\left[\begin{array}{cc}
-19 & 7 \tag{06Marks}\\
-42 & 16
\end{array}\right]
$$

Module-2

3 a Find C.F of $\left(4 D^{4}-8 D^{3}-7 D^{2}+11 D+6\right) y=0$.
(05 Marks)
b. Solve the initial yalue problem $\frac{d^{2} x}{\mathrm{dt}^{2}}+4 \frac{\mathrm{dx}}{\mathrm{dt}}+29 \mathrm{x}=0$

Subject to the conditions $x(0)=0, \frac{\mathrm{dx}}{\mathrm{dt}}(0)=15$.
(05 Marks)
c. Using the method of undetermined coefficients, solve $\left(D^{2}-4 D+3\right) y=20 \cos x$
(06 Marks)

OR

4 a. Solve $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$.
(05 Marks)
b. Solve $\left(D^{2}+4\right) y=x^{2}+2^{*}$.
(05 Marks)
c. Using the method of variation of parameters, find the solution of $\left(D^{2}-2 D+1\right) y=e^{x} / x$.
(06 Marks)

Module-3

5 a. Find the Laplace transform of $\frac{\cos 3 t-\cos 4 t}{t}$.
(05 Marks)
b. Find $L\left\{\sin ^{2} t\right\}$
(05 Miarks)
c. Express the following function interms of Heaviside unit step function and hence find the Laplace transform where

$$
f(t)=\left\{\begin{array}{cc}
t^{2} & 0<t \leq 2 \\
4 t & t=2
\end{array}\right.
$$

(06 Marks)

OR

6 a. Find $L\left[\frac{e^{-1} \cdot \sin t}{t}\right]$.
b. Using Laplace transform evaluate $\int_{0}^{\infty} \mathrm{e}^{-1} \operatorname{tsin}^{2} 3 \mathrm{tdt}$.
(05 Marks)
c. If $f(t)=\left\{\begin{array}{cc}t & 0 \leq t \leq a \\ 2 a-t & a \leq t \leq 2 a\end{array} \quad f(t+2 a)=f(t)\right.$, show that $L[f(t)]=\frac{1}{s^{2}} \tan h\left(\frac{a s}{2}\right)$.
(05 Marks)

Module-4

7 a. Find inverse Lanlace transform of $\frac{s+5}{s^{2}-6 s+i 3}$
(0s Marks)
b. Find inverse Laplace transform of $\log \left[\frac{s^{2}+4}{s(s+4)(s-4)}\right]$
(05 Marks)
c. Solve by using Laplace transform method $y^{\prime \prime}(t)+4 y(t)=0$, given that $y(0)=2, y^{\prime}(0)=0$.
(06 Marks)

OR

8 a. Find $L^{\prime 1}\left[\frac{s^{2}}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right]$.
(05 Marks)
b. Find $L^{-1}\left[\frac{(s+2) \mathrm{e}^{-s}}{(s+1)^{4}}\right]$
(05 Marks)
c. Solve by using Laplace transform method $y^{\prime \prime}+5 y^{\prime}+6 y=5 e^{2 x}, y(0)=2, y^{\prime}(0)=1$.
(06 Marks)

Module-5

9 a. There are 10 students of which three are graduates. If a committee of five is to be formed, what is the probability that there are (i) only 2 graduates (ii) atleast 2 graduates? (05 Marks)
b. In a school 25% of the students failed in the first language, 15% of the students failed in second language ard 10% of the students failed in both. If a student is selected at random find the probability that :
i) He failed in first language if he had failed in the second language.
ii) He failed in second language if he had failed in the first language.
(05 Marks)
c. In a bolt factory there are four machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D manufacturing respectively 20%, $15 \%, 25 \%, 40 \%$ of the total production. Out of these $5 \%, 4 \%, 3 \%$ and 2% are defective. If a bolt drawn at random was found defective what is the probability that it was manufactured by A or D .
(06 Marks)

$$
2 \text { of } 3
$$

OR

10 a. From 6 positive and 8 negative numbers, 4 numbers 4 rectosesi/at random (without replacement) and multiplied. What is the probability that the product is a positive number?
b. Thee studer.ts A, B, C write an entrance examination. Their chances of passing ate $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability that (i) atleast one of thim passes (ii) all of them passes.
(05 Marks)
c. Three major parties $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are contending for power in the elections of a state and the chance of their winning the election is in the ratio $1: 3: 5$. The parties $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively have probability of banning the online lottery $\frac{2}{3}, \frac{1}{3}, \frac{3}{5}$. What is the probability that there will be a ban on the online lottery in the state? What is the probability that the ban is from the party ' C '?
(06 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, Belagavi

Fourth Semester B.E. Degree Examination, Dećcìt18/Jan. 2019 Analysis of Determinate Structures

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.
 Modules

1 a. Explain briefly about different types of structural forms with the aid of neat sketches.
b. What is linear and non-linear structural system?
(06 Marks)
c. Analyse the pin jointed plane truss as shown in Fig Q1(c) by method of joints and hence tabulate the member forces.
(07 Marks)

2 a. Explain briefly the following:
i) Conditions of equilibrium
ii) Determinate and indeterminate structures
iii) Degree of freedom.
(06 Marks)
b. List the assumptions made in the analysis of pin jointed plane truss.
(03 Marks)
c. Determine the force in the members CD, DF, EF and CF for the pin jointed plane truss as shown in Fig.Q2(c) by the method of sections.
(07 Marks)

Module-2

3 a. Derive the second order differential expression EI $\frac{d^{2} y}{d x^{2}}=m$ with usual notations. (06 Marks)
b. Calculate the deflection at point C and slope at point A for the beam loaded as shown in Fig.Q3(b) by moment area method.
(07 Marks)

Fig.Q3(b)

c. State the moment area theorems.

OR

4 a. Calculate the deflections at points C and D and maximum deflection and its location for the beam as shown in Fig.Q4(a) by Machaulay's method. Take value of $\mathrm{EI}=17000 \mathrm{kN}-\mathrm{m}^{2}$.
(09 Marks)

Fig.Q4(a)

b. Calculate the maximum deflection and slope in the beam loaded as shown in Fig.Q4(b) by conjugate beam method.

Fig.Q4(b)

Module-3
5 a. Derive the expression for strain energy stored in an prismatic element subjected to pure bending moment.
(05 Marks)
b. Explain briefly what is complimentary strain energy.
(02 Marks)
c. Determine the vertical and horizontal deflection point C for the mill bent as shown in Fig.Q5(c) by unit load method.
(09 Marks)

Fig.Q5(c)

6 a. Sate Castigliano's theorems I and II.
(03 Marks)
b. Determine the verticaldeflection at point C for the pin jointed plane truss as show in Fig.Q6(b) by strair energy method. Cross section are of each member is $5000 \mathrm{~mm}^{2}$ and $\mathbf{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

Fig.Q6(b)

c. Determine the deflection at point C for the beam loaded as shown in Fig.Q6(c) by unit load method.
(06 Marks)

Fig.Q6(C)

2 of 4

Module-4
 Module-4

7 a. A three hinged parabolic arch is having a span of 36 m it is subjected to uniformly distributed load of intensity $30 \mathrm{kN} / \mathrm{m}$ from left support hinge to crown hinge. Determine the normal thrust, radial shear and bending moment quarter span point located from left support.
(08 Marks)
b. A cable is suspended from two points ' A ' and ' B ' which are 80 m apart. ' A ' is positioned 5 m below ' B '. The lowest point on the cable is 10 m below point ' A '. The cable supports a uniformly distributed load of intensity $20 \mathrm{kN} / \mathrm{m}$ over the entire span. Calculate reaction at supports and maximum tension in the cable.
(08 Marks)

OR

8 a. Calculate the support reactions normal thrust and radial shear at point ' D ' for a three hinged parabolic arch as shown in Eig. ©8(a).
(08 Marks)

Fig.Q8(a)

b. A three hinged stiffening girder of suspension bridge of span 120 m is subjected to two point loads of 480 kN and 600 kN at distances of 25 m and 80 m from the left support respectively. The dip of the cable is 12 m . Calculate maximum tension in the cable and shear force, bending moment values for the stiffening girder at 40 m from the left support.
(08 Marks)

Module-5

9 a. Determine the shear force at a section located 3 m from left support by constructing influence line diagram fer the beam with loading as shown in the FigQ9(a).
(07 Marks)

Fig:Q9(a)

b. A system of wheel loads move from left end to right end as shown in Fig.Q9(b) on a beam simply supported and having a span of 10 m . Calculate the maximum bending moment which can occur at a section located 4.0 m from the left end.
(07 Marks)

c. Explain briefly what is influence line diagram.
(02 Marks)

OR

10 a. Determine the influence line diagrams for the forces in the members $\mathrm{U}_{1} \mathrm{U}_{2}, \mathrm{U}_{2} \mathrm{U}_{3}, \mathrm{~L}_{2} \mathrm{~L}_{3}, \mathrm{U}_{2} \mathrm{~L}_{2}$ and $U_{2} \mathrm{~L}_{3}$ for the part truss as shown in Fig.10(a).
(10 Marks)

Fig.Q10(a)
b. A moving load travels from left to right on a girder of span 10 m as shown in Fig.Q10(b). Determine the absolute maximum benign moment acting in the girder.

Fig.Q10(b)

Fourth Semester B.E. Degree Examination, Dec 2 , $8 / \mathrm{Jan} .3019$ Applied Hydraulifs

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Madule-1

1 a. State and prove the Buckingham's π - Theorem. Why thic theceme is considered superior over the Rayleigh's method.
(08 Marks)
b. The discharge though a water is $9 \mathrm{~mm} / \mathrm{s}$ find the discharge though model of the weir if the horizontal dimension of hodel is $\frac{1}{50}$ the horizontait dimension of the protype and vertical dimension of the thel is $\frac{1}{10}$ the vertical dimetion of the prototype. (08 Marks)

OR

2 a. Derive an expressimp for the Reynolds's number Froude number's
(08 Marks)
b. A rectangular pohtion is 5 m long 3 m wite and 1.20 m high. The depth of immersion of the pontoon is 0.80 m in sea water. If the centre of gravity is 0.6 m above the bottom of the pontoon determine the meta centric height. The density for sea water is $1025 \mathrm{~kg} / \mathrm{m}^{3}$.
(08 Marks)

3 a. Derive an expression for the most economical trapezoidal section.
(08 Marks)
b. The discharge of water through a rectangular channel of width 8 m is $15 \mathrm{~m}^{3} / \mathrm{s}$ when the depth of flow of water is 1.2 m calculate
(i) Specific energy of the flowing water
(ii) Critical depth and critical velocity
(iii) Value of minimum specific energy.

4 a. What is specffic energy curve? Draw it and derive expressions for critical depth and critical velocity
(08 Marks)
b. A trapezoidal channel has sides slopes of 1 horizontal to 2 vertical and the slopes of the bed is 1 in 1500 . The area of the section is $40 \mathrm{~m}^{2}$. Find the dimensions of the section. If it is most economical. Determine the discharge of the most economical section if $\mathrm{c}=50$. (08 Marks)

5 a. Explain the term standing wave. Derive an expression for the depth of standing wave in terms of the Fronde number,
(08 Marks)
b. Find the slope of the free water strface in a rectangular channel of width 20 m having depth of flow 5 m . The discharge through the channel is $50 \mathrm{~m}^{3} / \mathrm{s}$. the bed of the channel is having a slope of 1 in 4000. Take the yalue of Chezy's constant $c=60$.
(08 Marks)

OR

6 a. Explain Back water curve and Afflux.
(04 Marks)
b. A sluice gate dischatge water in to a horizontal rectangular channel with a velocity of $6 \mathrm{~m} / \mathrm{s}$ and a depth of flow is 0.4 m . the width of the channel is 8 m . Determine whether a hydraulic jump will occur and if so, find its height and loss of energy per kg of water. Also determine the power lost in the hydraulic jump.
(12 Marks)

Module-4

a. Derive an expressica for the impulse momentum equation.
(08 Marks)
b. A Pelton wheel is working with a gross head of 500 m . One inird of the gross head is lost in friction in the penstock. The rate of flow of watter through the nozzle fitted at the end of the penstock is $2.0 \mathrm{~m}^{3} / \mathrm{s}$. The angle of deflection of the jet is 165°. Detelmine the power given by the water to the runner and also hydraulic efficiency of the Pelton wheel.
Take speed atio $=0.45$ and $\mathrm{C}_{\mathrm{v}}=1.0$.
(08 Marks)
a. Obtain an expression for the whrt done per second by water on the runner of a pelton wheel. Hence derive an expressien for maximum efficiency of the pelton wheel.
(08 Marks)
b. A jet of water of dianter 50 mm , having a velogity of $20 \mathrm{~m} / \mathrm{s}$ strikes a curved vane which is moving with a velocity $\%$ f $10 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet leaves the vane at an angle of 60° to the difection of motion of vane at out let. Determine :
i) The force ererted by the jet on the vane in the direction of motion
ii) Work donne per second by the jet
(08 Marks)

Module-5

9 a. By reans of a neat sketch, explaninte Francis Turbine , at
(08 Marks)
b. Find the power required to derive a centrifugal pump-xhich deiivers $C .04 \mathrm{~m}^{3} / \mathrm{s}$ of water to a height of 20 m through a 15 cm diameter pipe and 100 m long. The overall efficiency of the pump is 70% and coefficient of friction $f=0.15$ in the formula $h_{f}=\frac{4 f^{2}}{2 \mathrm{gd}}$

OR
10
a. Define specific speed of a centrifugal pump. Derive on expession for the specific speed.
(08 Marks)
b. The following data is given for a Francis Turbine, Net head $\mathrm{H}=60 \mathrm{~m}$ speed, $\mathrm{N}=700 \mathrm{rpm}$; shaft power $=294.3 \mathrm{~kW} ; \eta_{0}=84 \%, \eta_{4}=93 \%$ flow ratio $=0.20$; breadth ratio $\mathrm{n}=0.1$; outer diameter of the runner $=2$ xininer diameter of rumer. The thickness of vanes occupy 5% of circumferential area of the rotnner, velocity of flow is constant at inlet and outlet and discharge is radial at outle Wetermine :
i) Guide blade angle
ii) Runner vane angles at inlet and outlet
iii) Diarnetersof runner at inlet and outlet
iv) Width of wheel at inlet.

15CV/CT44

Fourth Semester B.E. Degree Ezamiguiton, Dec.2018/Jan. 2019

Concrete Techinology

Time: 3 hrs.
(4) - Bseme

Note: 1. Answer anv FIVE full questiens, choosing ONE full questiof from each module.
2. Any missing data may bexsuitubly assumed.
3. IS-10262 mix design cade is allowed.

Module- 1

1 a. Briefly explain the mapufacturing of cement ty dry process using flow chart.
(08 Marks)
b. What are Bogue's cothounds? Briefly explain their contribution towards gaining of strength of cement
(08 Marks)

2 a. List the types of cement and briefly explainthe properties and application of any four types of cement:
(08 Marks)
b. What are admixtures, classify them and briefly explain theiftole in concrete technology?
(08 Marks)

Module-2

3 a. Define workability and briefty explain the factorsfifuencing workability of concrete.
b. What are the effect of segregation and bleeding on the property of hardened concrete?
(08 Marks)

4 a. Explain the process of hydration ofement, its significance and the chemical reactions involved
(08 Marks)
b. Enumerate the need of compaction in concreting aftuist the methods of compaction.
(08 Marks)

Module-3

5 a. Ahis the factors that affect the strength of hartened concrete and explain briefly any two of them.
b. Define:
i) Elastic stain in concrete
ii) Elastie motulus
iii) Creep
iv) Shrinkage.
(08 Marks)

OR

6 a. What is maturity of concrete and briefly explain its significance in the gaining of strength of concrete?
(08 Marks)
b. List the tests that tean be conducted on hardened concrete to check its strength and explain any one of them.
(08 Marks)

Module-4

Design a concrete Mix for $M_{x x}$ grade of concretas oper IS 10262-2009 with following data:
i) Design stipulations

- Characif ristic compressive strengftanaired in field at 28 days
$-20 \mathrm{MPa}$
- Max size of aggregate (angulat)
- Degree of workability
- Degree of quality contro
$-20 \mathrm{~mm}$
- Type of exposure
-0.9 compaction factor
-

ii) Test data for materiats

- Specific gravityof cement
- Specific grayty of coarse aggregates

4-2.60

- Specific gray fy fine aggregates
- Watexatsorption for coarse aggr
- Water al sorption for fine aggregate
- Sturface inoisture for coarse aggregates -0.50%
- Surface moisture for fine aggregates
- Sieve andysis of ccarse agsregatos
- Sieve analysis of fine aggregates
- Nill
-2.0% 药
- Ccnfirming to table 2 of IS: 383

Confirming to zone - II of IS: 383

OR

(16 Marks)

8
What is the significance of concrete mix design and explain the steps involved in it?

9 a. Write short notes on: i) Ferro cement ii) Self compaéting concrete.
(08 Marks)
b. What is RMC? How its manufactured? Explain briefy

OR
10 a. What is light weight concrete? State its advantages.
(08 Marks) b. Write note on fibre reinforced concrete.

(08 Marks)

15 CV 45
USN

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Geotechnical Engineering

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Define: i) Void ratio ii) Porosity iii) Degree of saturation. iv) Air content. (08 Marks)
b. Explain the procedure to determine density of soil by core cutter method and sand replacement method.
(08 Marks)

OR

2 a. Explain Atterberg's limits.
(06 Marks)
b. The liquid and plastic limits of a given soil sample are 65% and 40% respectively. Compute its consistency index, liquidity index, flow index and toughness index. Given that the water content in the soil sample decreases from 80% to 40% for a ten fold increase in the number of blows required to close the groove in the standard liquid limit apparatus.
(10 Marks)

Module-2

3 a. Explain with neat sketches, the soll structure.
(08 Marks)
b. Describe the three principal clay minerals.
(08 Marks)
a. What are the objectives of compaction?
(04 Marks)
b. List the factors affecting compaction.
(04 Marks)
c. Following are the observations of compaction test:

Water content $\%$	Weight of wet soil (N)
7.7	16.67
11.5	18.54
14.6	19.92
17.5	19.52
19.5	19.23
21.2	18.83

If the volume of compaction mould is 950 CC and $\mathrm{G}=2.65$, determine the dry unit weight and OMC.
(08 Marks)

Module-3

5 a. Explain the laboratory method of determination of permeability by constant head method and variable head method.
(08 Marks)
b. The following details refer to a test to determine the permeability of soil.

Thickness of specimen $=25 \mathrm{~mm}$
Diameter of stand pipe $=10 \mathrm{~mm}$
Initial head $=1000 \mathrm{~mm}$
Final head $=800 \mathrm{~mm}$
Determine the permeability of soil. If the void ratio of sample is 0.75 , what is the permeability of same soil at a void ratio of 0.9 ?
(08 Marks)

6 a. What are the important properties of flow nets?
(04 Marks)
b. The porosity of a certain sample of sand was 50% in the loose state and 34% in the dense state. The specific gravity is 2.70 . Estimate the critical hydraulic gradients in loose and dense states.
(04 Marks)
c. A clay strata of thickness 8 m is located at a depth of 6 m below ground surface. It is overlaid by fine sand. The water table is located at a depth of 2 m below the ground surface. For fine sand the submerged unit weight is $10.2 \mathrm{kN} / \mathrm{m}^{3}$. The moist unit weight of sand located above the water table is $16 \mathrm{kN} / \mathrm{m}^{3}$. For clay layer, $\boldsymbol{G}=2.76$ and water content $=25 \%$. Compute the effective stress at the middle of clay layer.
(08 Marks)

Module-4

7 a. Explain Mass-Spring analogy.
4*
(08 Marks)
b. What are the assumptions made in Terzaghis theory of one-dimensional consolidation?
(08 Marks)

OR

8 a. Explain compressibility of soil and volume change.
(04 Marks)
b. Differentiate between normally consolidated soil and over-consolidated soil.
(04 Marks)
c. A saturated specimen of clay had undergone consolidation under a pressure of $200 \mathrm{kN} / \mathrm{m}^{2}$ in an oedometer test. The thickness of the specimen was found to be 21.18 mm and its water content $\left(2 \%\right.$. Subsequently, with a further increase in pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$, the thickness of specimen at the end of 24 hrs was reduced by 1.18 mm . Compute the coefficient of volume compressibility and compression index of soil $\mathrm{G}=2.7$,
(08 Marks)

Module-5

9 a. Explain Mohr's Coulombs failure theory and draw the failure envetope for different soils.
b. What are the factors affecting the shear strength of soil?
(08 Marks)
c. What are the advantages and disadvantages of direct shear test?
a. Explain triaxial compression test and what are the advantages of triaxial test.
(08 Marks)
b. Following results are obtained from a direct shear test on a soil at failure,

Normal load (N)	100	200	300	400
Shear load (N)	90	181	270	362

Size of the box $=6 \mathrm{~cm} \times 6 \mathrm{~cm}$. Determine shear strength parameters.
(08 Marks)

USN

15CV46

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Advanced Surveying

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. With the help of a neat sketch of asimple circular curve? Explain:
i) Tangent length;
ii) Length of long chord;
iii) Length of curve;
iv) Summit distance;
v) Vertex distance; vi) Intersection angle.
(06 Marks)
b. Two tangents intersect at a chainage $(59+60)$, the deflection angle being $50^{\circ} 30^{\prime}$. Calculate the necessary data for setting out a curve of 15 chains radius to connect the two tangents, if it is intended to set out the curve by Rankine's method of deflection angles. Take the peg interval equal to $100 /$ links, the length of the chain being 20 m (100 links). Draw the curve table.
(10 Marks)

OR

2 a. With the helpof neat sketch, explain the elements of a compound cure.
(06 Marks)
b. A road bend which deflects 80° is to be designed for a maximum speed of 100 km per hour, a maximum centrifugal ratio $1 / 4$ and a maximum rate to the change of acceleration of $30 \mathrm{~cm} / \mathrm{sec}^{3}$, the curve consisting of a circular arc combined with two spirals. Calculate: i) The radius of circular arc ii) The required length of transition ii) The total length of composite curve and iv) The chainages of the beginning and end of transition curve, and of the junctions of the transition curves with the circular arc, if the chainage of the point of intersection is 42862 metres.
(10 Marks)

Module-2

3 a. Explain orders of triangulation.
(06 Marks)
b. Explain any four points to be kept in mind while selecting triangulation stations. (04 Marks)
c. From an eceentric station $S, 12.25$ metres to the west of the main station B. the following angles were measured. $\angle \mathrm{BSC}=76^{\circ} 25^{\prime} 32^{\prime \prime}, \mathrm{CSA}=54^{\circ} 32^{\prime} 20^{\prime \prime}$. The stations S and C are to the opposite sides of line $A B$. Calculate the correct angle $A B C$ if the lengths of $A B$ and $B C$ are 5286.5 and 4932.2 m respectively.
(06 Marks)

OR

4 a. Explain: i) Observed value of a quantity; ii) Most probable value; iii) Observation equation; $\mathrm{j} v$) Conditioned equation, v) Indirect observation: vi) Normal equation.
(06 Marks)
b. Adjust the following angles closing horizon.
$\mid \mathrm{A}=110^{\circ} 20^{\prime} 48^{\prime \prime}$
$\mid \mathrm{B}=92^{\circ} 30^{\prime} 12^{\prime \prime}$
$\mathrm{C}=56^{\circ} 12^{\prime} 00^{\prime \prime}$
$\mathrm{D}=100^{\circ} 57^{\prime \prime} 04^{\prime \prime} \quad$ wt 1
wt 2
wt 3
(10 Marks)
a. Define the terms:
i) The Zenith ard Nadir
ii) The celestial poles and equator
iii) The sensible horizon
iv) The visible horizon
v) The altitude (α)
vi) Co-latitude.
(06 Marks)
b. Find the shortest distance between two points A and B given that the latitudes of A and B are $15^{\circ} 0^{\prime} \mathrm{N}$ and $12^{\circ} 6^{\prime} \mathrm{N}$ and their longitudes are $50^{\circ} 12^{\prime} \mathrm{E}$ and $54^{\circ} 0 \mathrm{E}$ respectively. Find also the direction of B on the great circle route. Radius of Earth $=6370 \mathrm{~km}$.
(10 Marks)

6
State that propertie of a spherical triangle.

(05 Marks)
b. Show that one nautical mile is equal to 1.852 km .
(04 Marks)
c. Calculate the distance in kilometers between two points A and B along the parallel of latitude given that:
i) Latitude of A, $28^{\circ} 42^{\prime} \mathrm{N}$; longitude of $\mathrm{A}=31^{\circ} 12^{\prime} \mathrm{W}$ Latitude of $B, 28^{\circ} 42^{\prime} \mathrm{N}$; longitude of $\mathrm{B}=47^{\circ} 24^{\prime} \mathrm{W}$
ii) Latitude of $\mathrm{A} \geqslant 12^{\circ} 36^{\prime} \mathrm{S}$; longitude of $\mathrm{A}=15^{\circ} 6^{\prime} \mathrm{W}$ Latitude of $B ; 12^{\circ} 36^{\prime}$ S; longitude of $B=150^{\circ} 24^{\prime} E$.
(07 Marks)

Module-4

7 a. Define the terms: i) Camera axis;
ii) Picture plane (ii) principal plane; iv) print ; v) Fuducial axis; vi) Film base.
(06 Marks)
b. Three points A. B and C were photographed and theif coordinates with respect to the lines joining the collimation marks on the photograph are:

Point	x	y
a	-35.52 mm	+21.43 mm
b	+8.48 mm	-16.38 mm
c	+48.26 mm	+36.72 mm

The focal length of lens is 120.80 mm . Determine the azimuths of the lines $O B$ and $O C$ if that of OA is $354^{\circ} 30^{\prime}$. The axis of camera was level at the time of exposure at the station O .
(10 Marks)

8 a. Derive a relation for the scale of a vertical photograph.
(06 Marks)
b. A vertical photograph was taken at an altitude of 1200 metres above the mean sea level. Determine the scale of photograph for terrain lying at elevation of 80 metres and 300 metres, if the focal length of camera is 15 cm .
(10 Marks)

9 a. Enumerate three types of measurement of distance with instruments used.
(06 Marks)
b. With sketches explain properties of electromagnetic waves and electromagnetic spectrum.
(10 Marks)

OR

10 a. Explain the compenents of GIS.
(08 Marks)
b. Explain the applications of remote sensing in civil engineering.
(08 Marks)

Fifth Semester B.E. Degree Examination, Dec. 20 FR84.5an. 2019 Design of RC Structural Elements

Time: 3 hrs.

Note: 1. Answer FIVE full questions, choosing ONE full question from each module.
 2. Use of IS456-2000, SP-16 permitted.
 3. Assume any missing data sutidely.

Module-1

1 a. Briefly explain the principles eflimit state.
(06 Marks)
b. Briefly explain the modes of fallure of beam sections with sketches.
(06 Marks)
c. What are the causes of cracking in RC members?
(04 Marks)
OR
2 A simply supported beam has a rectangulat section and carries a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ ox a clear span of 4.5 m the cross section is $300 \mathrm{~mm} \times 550 \mathrm{~mm}$ and is reinforced with 4 no's of 20 mm diameter bar.
Assume cover $=25 \mathrm{~mm}$ and bearing $=300 \mathrm{~mm}$. Assuming, M20 grade concrete and Fe 415 steel, compute short and long tervilaflection of the beame
(16 Marks)

Module- 2

3 a. A Cantilever R.C. beam of span 2 m is rectangular ip cross section $230 \mathrm{~mm} \times 380 \mathrm{~mm}$. It is reinforced with 3-16 gnm \#lameter bars on tensiph side. Assume clear cover as 25 mm .
M20 grade concrete and $\Phi 415$ steel is used Determine the permissible concentrated load at the free end of Cantilever.
(08 Marks)
b. A Doubly reinforeed beam section 250 mm wide 500 mm dêep to the centre of the tensile reinforcement this reinforced with $3-16 \mathrm{~mm}$ diameter bars as compression reinforcement at an effective cover of 50 mm and 4 bars of 20 mm diameter as tension reinforcement. Determine the moment of resistance of the section, M20 concrete and Fe 500 steel is used.

OR
(08 Marks)
4 a. Determine the minimum effective depth required and the corresponding area of tension reinforcement for a rectangle beam having a width of 200 mm to resist an ultimate moment $01200 \mathrm{kN}-\mathrm{m}$. M20 學ate concrete and Fe4t5 steel is used.
(04 Marks)
b. P A reinforced concrete beam has a support section with a width of 250 mm and effective depth of 500 mm . The support section is reinforced with 3 bars of 20 mm diameter on the tension side 2 legged 8 mm diameter stirrups are provided at a spacing of 200 mm centre to centre. Caleulate the shear strength of the support section for M20 grade concrete and Fe415 steel.
(06 Marks)
c. A singly reinforced slab 420 mm thick is supported by T-beam spaced at $3 \mathrm{~m} \mathrm{C} / \mathrm{C}$, the effective depth and width of web are 580 mm and 450 mm respectively. Eight HYSD bars of 20 mm diameter have been provided in tension in two layers, with 4 no's in each layer. The effective cover in lower tier is 50 mm . The effective span of simply supported beam is 3.6 m and grade of conterete is M20. Determine the depth of neutral axis and the moment of resistance of T-4eàms section.
(06 Marks)

Module-3

a. Design the shear reinforcement for an RC beam $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ effective carrying a uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$ run factored ver a span of 6 m supported over 300 mm wide bearns. Use M20 grade concrete and Fe 415 grade steel.
(08 Marks)
b. Design the reinforcement for tension and compression reinforcement side and its percentage for a doubly reinforced rectangular beam simply supported at both ends. The size of the beam is $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ effective. Effective cover to compression reinforcement is 50 mm . The ultimate factored total load of $90 \mathrm{kN} / \mathrm{m}$ including self weight of beam is acting between the supports of effective spati 6.0 m . Grade of concreterand steel are M20 and Fe415.
(08 Marks)

OR

6 Design one of the intermediater beam for a hall measuring $7 \mathrm{~m} \times 12 \mathrm{~m}$ with beams spaced at $3 \mathrm{~m} \mathrm{C} / \mathrm{C}$. Depth of slab is 120 mm . Live load on slab is $9.5 \mathrm{kN} / \mathrm{m}^{2}$ including finishes. Use M20 grade concrete and Y YD bars.
(16 Marks)

Module-4

7 a. Distinguish between one way and two way slab.
(02 Marks)
b. Design an interior panel of a two-way slath of size $5 \mathrm{~m} \times 5 \mathrm{~m}$. Live load $=3 \mathrm{kN} / \mathrm{m}^{2}$, floor finish $=1 \mathrm{kN} / \mathrm{m}^{2}$ and bearing $=300 \mathrm{~mm}$ Adopt M20 grade concrete and Fe415 grade steel. Sketch the weipforcement details in plan,
(14 Marks)

8 The clear dimension of a stair base hall is $2.4 \mathrm{~m} \times 45 \mathrm{~m}$. The floor to floor height is 3.52 m . A two flight dog legged stair is to be pronded between the two floors with a rise of 160 mm . Design the stairsand also check for deflection. Sketch the remforcement details of any one of the flight.

(16 Marks)

Motione-5

9 a. A RCC square column of side 300 mm is reinforced ith 4 bars of 16 mm diameter. Determine the allo wable service load of the column. M25 grade concrete and Fe500 steel is used.
(04 Marks)
b. A rectangular column of size $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ is sibjected to an axial load of 1200 kN and moment of $30 \mathrm{kN}-\mathrm{m}$ acting about an axis bisectingthe depth of column.
Effective cover $=50 \mathrm{~mm}$. Calculate the necessary reinforcement adopting M20 grade concrete and Fe 415 steef Sketch the reinfoccement details.
(12 Marks)

OR
Design a rectangular footing of flat type for a column of size $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ carrying an axial load of 200 kN . SBC of soil is $200 \mathrm{kN} / \mathrm{m}^{2}$. Adopt M20 concrete and Fe500 steel. Sketch the ceinforcement detail\$

CBGs

USN \square
Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Analysis of Indeterminate Structures

Time: 3 hrs .
Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 Analyze the continuous beam shown in Fig.Q. 1 by slope deflection method and draw BMD.

Fig.Q. 1
OR
Analyze the rigid frame show in Fig.Q. 2 by slopedeflection method and draw BMD.

(16 Marks)

Module-2

3 Analyze and draw BMD for the continuous beam shown in Fig.Q. 3 by moment distribution method if suipport ' B ' sinks by 30 mm and support ' C ' sinks by 20 mm . Take $\mathrm{EI}=24,000 \mathrm{kNm}^{2}$.
(16 Marks)

Fig.Q. 3
1 of 3

OR

4 Analyze the rigid fiame shown in Fig.Q. 4 by momentedistribution method and draw BMD.
(16 Marks)

Fig.Q. 4

Module-3

5 Analyze and draw BMD fet the continuous beam shown in Fig.Q. 5 by Kani's method, if support ' B ' sinks by 10 mm and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, $1.2 \times 10^{-4} \mathrm{~m}^{4}$.
(16 Marks)

Fig.Q. 5

Analyze the rigid frame shown in Fig.Q. 6 by Kanes method and draw BMD.
(16 Marks)

Module-4
Analyze the continuous beam shown in Fig.Q. 7 by matrix flexibility method using system approach and draw BMD. Take moments as redundants.
(16 Marks)

Fig.Q. 7

2 of 3

OR

8 Analyze the pin-jointed truss shown in Fig.Q. 8 by matix flexibility method of system approach and determine forces in all the members Take force in member ' OA ' as redundant.
(16 Marks)

Module-5

9 Analyze the xigid frame shown in Fig.Q. 9 by matrix stiffness method and draw BMD.

Fig.Q. 9

10 Analyze the pinjointed frame shown in Fig.Q. 10 by matrix stiffness method and find forces in all the members. The numbers in parentheses ate the C/S areas of members in sqmm. (Take $\mathbf{Q}^{=}$constant).

Fig.Q. 10

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, Belagavi

(9) 9 ค
 USN

 Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Applied Geotechnical Engineering

Time: 3 hrs.
Mäx. Marks: 80

Note: Answer any FIVE full questionschoosing ONE full question from each module.

1 a. What is Stabilization of bore beles. Mention various methodsand explain any one method.
(06 Marks)
b. With the help of neat sketeh, explain Seismic Refraction method of soil exploration. Using this method, determine the velocity of waves in soil fayers and thickness of the top stratum, for the following details:

Tinfe (s) :	0.1	0.2	0.3	0.4	0.45	0.50	0.55
Ditanice (m) :	40	80	120	160	200	240	280

Geophones are placed at a spacing of 40 m in a straight line and the time taken for the last wave to be teceived at each geo - phone is given.
(10 Marks)
OR
2 a. List and explain types of soil samples.
(06 Marks)
b. Explain the determination of ground water level by floorslev's method. Using this method estimate the ground water table level for the following data:
Depth up to which water is boiled out $=15 \mathrm{~m}$; Water rise on first day $=0.80 \mathrm{~m}$;
Water rise on second day 0.70 m ; Watertiseion third day $=0.60 \mathrm{~m}$.
(10 Marks)

Module-2

3 a. Explain types of setllements with formulae.
(06 Marks)
b. Define Isobar. Using Boussenesq's equation construct isobar of intensity $0.25 \mathrm{Q}(25 \%$ isobar), where Q is point load acting on the surface.
(10 Marks)

4 a. A cirçular area 6 m diameter carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}^{2}$, determine the yertical stress at a depth of $2 \mathrm{~m}, 4 \mathrm{~m}$ and 8 m . Plot the variation of vertical stress with depth.
(06 Marks)
b. * square footing $12 \mathrm{~m} \times 1.2 \mathrm{~m}$ rests on saturated clay layer 4 deep. $\mathrm{W}_{\mathrm{L}}=30 \%$, $\gamma_{\mathrm{sat}}=17.8 \mathrm{kN} / \mathrm{m}^{3} W=28 \%$ and $\mathrm{G}=2.68$. Determine the settlement if the footing carries a load of 300 kNa

(10 Marks)

Module-3

5 a. Explain Fellinious method of obtaining centre of critical slip surface in the case of stability analysis of $\mathrm{C}-\phi$ soil.
(06 Marks)
b. A retaining wall of height 10 m supports cohesionless soil with the following properties. $\mathrm{G}=2.65, \mathrm{e}=0.65$ and $\phi=30^{\circ}$, Water table lies at 3 m depth. Surface of back fill is horizontal and carries surcharge of intensity $14 \mathrm{kN} / \mathrm{m}^{2}$. Draw lateral active earth pressure distribution diageam. Determine total active earth pressure and its point of application.
(10 Marks)
OR
a. Derive equations for the earth pressure coefficients K_{4} and K_{p} by considering back fill with horizontal surface. Use Rankine's theory.
(06 Marks)
b. An embankment is to be constructed with a sol having $C=20 \mathrm{kN} / \mathrm{m}^{2}, \phi=10^{0}$ and $\gamma=19 \mathrm{kN} / \mathrm{m}^{3}$. The desired factor of safety withespect to cohesion as as friction as 1.5 . Determine i) Safe height of the desired slope if slope is 2 H to 1 V .
ii) Safe angle of slope if the desired height is 15 m . For $\phi=10^{\circ}$; Tayfor's stability numbers are as follows :

Stability No:	0.04	0.08
Slope angle (i) :	20	30

Module-4
7 a. With the help of sketehes, explain effect of water table and eccentric loading on bearing capacity soil.
(06 Marks)
b. A square footing located at a depth of 1.3 m below the ground has to carry a load of 800 kN . Find the size of fociting, if the desirable factop of safety is 3 . The soil has the following properties. Void ratio $=0.55$; degree of saturation $=50 \%$, Specific gravity $=2.67$, Cohesion 8 KPa , Angle of shearing resistance $=30^{\circ}, \mathrm{N}_{\mathrm{c}}=37.2, \mathrm{~N}_{\mathrm{q}}=22.5$ and $\mathrm{N}_{\gamma}=19.7$.
(10 Marks)

8 a. Explain Standard Penetration test with suitable corrections.
(06 Marks)
b. A rectangular footirg has a size of $1.8 \mathrm{~m} \times 3 \mathrm{~m}$ has to transmit the load of a column at a depth of 1.5 m . Calculate the safe load which the fogting can carry ata factor of safety of 3 against shear failure. Usets code method. The soil has following properties : $n=40 \%$; $\mathrm{G}=2.67 ; \mathrm{W}=15 \% ; \mathrm{C}=8 \mathrm{kN} / \mathrm{m}^{2}$ and

Module-5

9 a. With the help of skerch, explain negative skin friction.
b. A 200 mm diameter, 8 m long piles are unsed as foundation for a column in a uniform deposit of medium clay having unconfined compressive strength of $100 \mathrm{kN} / \mathrm{m}^{2}$. The spacing between the piles 1 s 500 mm . There are 9 piles in the ground arranged in a square pattern. Calculate the ultimate load capacity of the group. Assume adhesion factor $=0.9$ and $\mathrm{N}_{\mathrm{C}}=9$. (10 Marks)

10 Write short notes on ant four of the following :
a. Efficiency of pilegroup.
b. Group capacity of piles.
c. Pile load test
d. Settlement of piles.
e. Under reamed piles.
f. Single loaded pile capacity.
(16 Marks)

(10 Marks)
OR

Fifth Semester B. E. Degree Examination, December 2018
(CIVIL ENGINEERING)
COMPUTER AIDED BUILDING PLANNING AND DRAWING
Time: 3 Hours
Max. Marks: 80
Note: Answer any TWO full questions. Assume any missing data suitably.

Q1. Prepare a working drawing for an isolated rectangular RCC column and footing has the following details:

Column size: $(400 \times 600) \mathrm{mm}$.
Size of footing: $2 \mathrm{~m} \times 3 \mathrm{~m}$ of uniform thickness 450 mm
Depth of foundation befow $\mathrm{GL}=1.5 \mathrm{~m}$
Height of column to be shown above $\mathrm{GL}=1.0 \mathrm{~m}$
Thickness of PCC bed in 1:3:6 $=75 \mathrm{~mm}$
Details of reifforcement:
Column: \#8-16 as main bars with $2 \mathrm{~L}-8 \phi$ (4) $150 \mathrm{c} / \mathrm{c}$ lateral ties
Footing Longer direction steel - 12 \oint @ $130 \mathrm{c} / \mathrm{c}$
Shorterdirection steel-12 \oint @ $220 \mathrm{c} / \mathrm{c}$

Drow plan and sectional elevation of RCC dog legged staircase for an office building which measures $3 \mathrm{~m} \times 5.5 \mathrm{~m}$. The vertical listance between the floor is 3.3 m (including landing). Thickness of the floor s $\rfloor a b$ is 150 mm . Provide steps with tread of 300 mm and rise of 150 mm . Thickness of waist slab and landing slab is 150 mm . Width of stair is 1.5 m . Reinfortement details: main steel $10 \phi @ 125 \mathrm{c} / \mathrm{c}$ spacing and distribution: $8 \phi @ 250 \mathrm{c} / \mathrm{c}$ spacing.
(30 Marks)

Q3. Line diagram of single storey residential building is given in figure Q3. Draw to scale the following:
a a plan at sill.
bubront elevation.
c. Section along $\mathbf{X X}$
(50 Marks)
(50

Line diagram of single storey Hospital building is given in figure Q4. Draw to scale the following:
a. Planatsill.
be Front elevation.
c. Section along XX
(50 Marks)

1 of 3

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, Belagavi

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, Belagavi

USN \square
Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Railways, Harbours, Tunneling and Airports

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Discuss the significance of road, rail water and air transport.
(06 Marks)
b. What are the functions and requirements of ballast?
(05 Marks)
c. Illustrate the constituents of right hand turnout in detail.
(05 Marks)

2 a. Explain the conventional methods of route alignment survey.
(08 Marks)
b. What should be the equilibrium Cant on a M.G curve of 5° for an average speed of 60 kmph ? Also firid out the maximum permissible speed after allowing the maximum Cant deficiency.
(08 Marks)

Mbdule- 2

3 a. Describe the stabilization of track on poor soil.
(08 Marks)
b. Explain the modern methods of maintenance of railway track.
(08 Marks)

OR

4 a. Define yards. Explain the types of yards.
(08 Marks)
b. Evaluate the quantity of materials required to construct 1.5 km long BG track. Take sleeper Density $=(m+6)$, Length of Rail $=13 m$
(08 Marks)

Module-3

5 a. List and briefly explain the classification of harbour based on protection needed, and location.
(08 Marks)
b. Define tumel. Explain the shapes of tunnel with neat sketch.
(08 Marks)

OR

6 a. Describe the components of harbour with neat sketch.
(08 Marks)
b. Write a note on tunhel ventilation and tunnel lining.
(08 Marks)

Module-4

7 a. Discuss the characteristics of air transport?
(04 Marks)
b. Enumerate the classification of ailports based on ICAO and FAA.
(06 Marks)
c. Mention the objectives of airport planning.
(06 Marks)

OR

8 a. Sketch the typical airports showing different types of runways.
(08 Marks)
b. Explain the various factors which you would keep in view while selecting a suitable site for an airport.
(08 Marks)

1 of 2

Module-5

9 a. Define orientation of runway. Briefly explain the protedure of plotting Type-II wind Rose diagram.
b. Explain the different types of Markings used in antoort.

10 a. Describe the elements of taxiway geometric fesign.

(08 Marks)
b. Calculate the actual length of runway from the following data:
(i) Airport elevation : R.L 100
(ii) Airport Reference Temperature 28°
(iii) Basic Runway length : 600 m
(iv) Highest Point along the length : R.L 98.2
(v) Lowest point along the length : R.L 95.2

Fifth Semester B．E．Degree Examinatiqio Déc．2018／Jan． 2019 Masonry Structures
Time： 3 hrs．

Max．Marks： $\mathbf{8 0}$
Note：1．Answer FIVE full questions，choosing one full question from each module． 2．Use of IS1905－1987 code is permuly．
b．Explain in detail the properties of Tortal．

2 a．Explain the qualities of goo building stone and brick used in masonry．
（08 Marks）
b．Explain ：（i）Effect p\＆otkmanship on masonrystrongth．
（ii）Initial of absorption．
（08 Marks）
Modulte－2
3 a．Explain the following types of masonelements（i）Solid wall
（iii）Cavitwall（iv）Panel wall．
（ii）Faced wall
（08 Marks）
i．b．A solid wallof thickness 100 mm is constructed with brick units of $10 \mathrm{~N} / \mathrm{mm}^{2}$ and M1 type of mortar．Ceiling height of wall 3 m ．Load acts restrained at top and bottom．Determine
（i）Effective height
（ii）Effective thic
（iii）Slenderness ration
（iv）Eccentricity
（v）Stress modificallon factor
（vi）Ayèa reduction factor
（vii）Shape modificationgfactor（viii）Permissiblecompressive stres．
（08 Marks）
（08 Marks）
4 a．Explain the follong：
（i）Area redutien factor．
（ii）Effective length．
（iii）Slenderness ratio．
（iv）Effect height．
b．Write afort note on loadetispersion and arching action in masonry．
（08 Marks）
5 Module 3
5 wist the steps involved in the design of catyy walls（without eccentricity）．
（06 Marks）
b．Design an intergranll of a single storeyed workshop of height 5.4 m supporting a RCC roof．The botyon of the wall reds gver a foundation block．Assume roof load equal to $45 \mathrm{kN} / \mathrm{m}$ ．RAf Fig．Q5（b）．

Solid wall with piers
Fig．Q5（b）

OR

6 Design an interior wall of a two storeyed building with RCQ slabs of effective span 2.65 m . The wall is 3.6 m ong and is stiffened at the ends $6 \times 100 \mathrm{~mm}$ thick intersecting walls. The ceiling height of each floor is 3 m . Refer Fig. Q6.
(16 Marks)

7 a. Design an interto wall of a two storeyed wath concrete slabs with a storey height of 3 m . The wat 湦 stiffened by 100 mm the has a dot opening of size $900 \times 2000 \mathrm{~mm}$ at a distance of 200 mm from one of the intersecting walls. Assume loading as follows:
(䡃) Roof loading $=15 \mathrm{kN} / \mathrm{m}$
(ii) Floor loading $=12.5 \mathrm{k} / \mathrm{m}$
(10 Marks)
b. With neat sketch, explain various stress distributimumer eccentric leads.
(06 Marks)

8 Design an interior cayity wall of a two steryed building cartying eccentric load due to unequal short spans of roof / floor of 4 htind 3 m on eitherside of the wall. The height of each storey is 3 m . Assume intensity of Coading as followt
(i) From roof $6 \mathrm{kN} / \mathrm{m}^{2}$
(ii) From flo $=4 \mathrm{kN} / \mathrm{m}^{2}$

Assumederall thickness $=25 \mathrm{~mm}($ cavity wall) Eah leaf being 100 mm thick. (16 Marks)

Module-5.

9 a. Design an solid wall under wind loading of a ingle storey warehouse of 3.5 m height. The 1 hogding on the wall cosists of vertical loadof $25 \mathrm{kN} / \mathrm{m}$ from the roof and wind pressure of $860 \mathrm{~N} / \mathrm{m}^{2}$. The wall fied with metal anclior at the floor and roof levels.
(12 Marks)
b. Explain the varios modes of failures on infilled frames.
(04 Marks)

OR

10 a. List the step fnvolved in the design of compound wall.
(08 Marks)
b. List the steps involved in the design of a shear wall under seismic loading.
(08 Marks)

15CV561

Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Traffic Engineering

Time: 3 hrs.
4. Max. Marks: 80

Note: Answer any FIVE full questions, thoosing ONE full question from each module.

1 a. In detail explain the road usef characteristics.
(08 Marks)
(08 Marks)

OR

2 a. Explain the details vehicle characteristics affecting road design.
(08 Marks)
b. Explain urban traffic problems and measure to meet the problems.
(08 Marks)

Module-2

3 : a. Briefly explair the various causes of accidents.
(08 Marks)
b. Define the term spot speed. Explainthepresentation of sporspeed data.
(08 Marks)

4 a. Explain the preventive measures to reduce accidents
(08 Marks)
b. Explain the importance and riethods of traffic forecasting.
(08 Marks)

Module-3

5 a. Enumerate the design factors and advantages of rotary intersection.
(10 Marks)
b. Write short notes on i) Road markings
ii) Channelized intersections. (06 Marks)

6 a. What are the advantages and disedvantages of traffic signal?
(08 Marks)
b. Explainurafic signal design as per IRC method.

Module 4

7 a. Explain various design factors of highwaydighting.
(10 Marks)
b. Explain the various detpmental effect of traffic noise.
(06 Marks)
OR
8 a. List and explain different types of lighting layouts.
b. Explain the measure to control the traffic noise.
(08 Marks)
(08 Marks)

Module-5

9 a. Discuss the details of traffic system management.
(08 Marks)
b. List and explain the vanous phases of traffic regulation.

10 Write short noteson:
a. TDM
b. ITS
c. Traffic congestion
d. Road pricing system.

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, Belagavi

Fifth Semester B.E. Degree Examination, Dés,2018/Jain. 2019
 Remote Sensing and GIS

Time: 3 hrs .
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Remote Sensing. Explain the process of remote sensing with neat sketch.
(08 Marks)
b. Describe the Electromagnetic spectuim with a neat sketch.
(08 Marks)

OR

2 a. Explain the energy interactions with earth surface features (soil, water and vegetation) with a neat sketch.
(06 Marks)
b. Define Visual Interpretation. Enumerate different types of elements considered during visual interpretation process.
(10 Marks)

Module-2

3 a. Explain different types of IRS series satellites used in remote sensing.
(08 Marks)
b. Explain different types of sensors used in remote sensing.
(08 Marks)

OR

4 a. Explain different types of senser resolutions in remote sensing.
(08 Marks)
b. Illustrate Radiometric and Geometric corrections in digital image processing.
(08 Marks)

5 a. Define GIS. Describe the key components of GIS software. (08 Marks)
5 a. Define GIS. Describe the key components of GIS software,
(08 Marks)
6 a. Explain different types of coordinate systems used in GIS.
(08 Marks)
b. Describe different types of map projections used ing GIS.
(08 Marks)
7 a. Explain topological modet of vector data overfay concept.
(08 Marks)
b. Explain the creation of shape file in vector data model.

OR

8 a. Describe Raster data GIS modefs with sketch.
(08 Marks)
b. Explain advantages and disadvantages of Raster data.

Module-5

9 a. Explain the role of Remote sensing in monitor of land use changes.
(08 Marks)
b. Explain the application of Remote Sensing and GIS in water resources management.
(08 Marks)

OR

10 a. Explain the applications of RS and GIS for natural resources management system. (08 Marks)
b. Describe the application of RS and GIS in the field of Urban planning.
(08 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, Belagavi

15CV564
Fifth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Occupational Health and Safety

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Outline the purpose of Occupational Safety and Health Act of India.
(08 Marks)
b. Explain the history of Safety development.
(08 Marks)

2 a. Define i) Accident ii) Hazard

OR

b. Write a short note on 3E's of safety.
iii) Risk.
(03 Marks)
c. Explain the various methods of Accident Investigation.
(03 Marks)
(10 Marks)

Module-2

3 a. Define 'Eggonomics'. Discuss the elements of OSHA's Ergonomic guidelines.
(10 Marks)
b. Discuss the hazard preventions and control methods.
(06 Marks)

OR

4 a. Define i) Human error analysis
ii) Fault tree analysis.
(08 Marks)
b. Write a brief note on Worksite analysis programme for Ergonomics.
(08 Marks)

Module-3

5 a. Define Fire and discuss the classification of fire.
(08 Marks)
b. Discuss the i) Effect of enclosure
ii) Early detecting of fire.
(08 Marks)

OR

6 a. List and explain the various methods of extinguishing fire.
(08 Marks)
b. Discus the management of electrical safety.
(08 Marks)

Module-4

7 a. Discuss about the health problems at work place.
(08 Marks)
b. Explain the necessary actions to be implemented at work place.
(08 Marks)

8 a. Explain the different types of personal protective equipment.
b. Discuss the Environment Management plan for safety and sustainability.
(08 Marks)
(08 Marks)

Module-5

9 a. Explain the preventive measures for safety in construction industry.
(08 Marks)
b. Discuss the Safety and Health in wastewater treatment plants.
(08 Marks)
10 OR
10 a. Discuss the roles and responsibilities of Managers in construction industry.
(08 Marks)
b. Discuss the handling of chemicals in laboratories.

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, Belagavi

USN

Sixth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Highway Engineering

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.

Modules

1 a. Explain various characteristics of Road Transport.
(05 Marks)
b. Explain briefly the salient features of third twenty year road development plan.
(05 Marks)
c. There are three alternate proposals of road plans for a district in Karnataka state. Suggest the order of priority for planning road based on the maximum utility approach. Assume utility units of $0.5,1.0,2.0$ for the three population ranges and utility of 1.0 and 10.0 per 1000 tonnes of agriculturatind industrial products served.

2 a. Explain the role of transportation in social and economic development of the country.
b. Explain briefly the following :
(i) Jayakar Committee,
(ii) Indian RoadConsess (IRC)
(iii) Central Road Fund (CRF)
(05 Marks)
c. The area of a certain district in India is $13,400 \mathrm{sq} \cdot \mathrm{km}$ and there are 12 towns as per 1981 census. Determme the lengths of difeteht categories of roads to be provided in third twenty year road development plan.
(06 Marks)

3 a. What ate the basic requirements of an ideal highway alignment? List and explain briefly.
(05 Marks)
b. Briefly explain the role of pavement surface characteristics in highway geometric design.

64 (05 Marks)
6. Calculate the safe stomping sight distance for design speed of 50 kmph . For (i) Two way traffic on two lane load (ii) Two way traffic on a single lane road. Assume $f=0.37$ and reaction time, $=2.5 \mathrm{sec}$.
(06 Marks)
OR
4 a. Briefly explain how MAP study is helpful in the alignment of new highway.
(05 Marks)
b. Give the details of drawing to be prepared in highway project and discuss briefly.
(05 Marks)
c. The radius of a horizontal circular curve is 100 m . The design speed is 50 kmph and the design co-efficien of lateral friction is 0.15 .
(i) Calculate the super elevation required if full lateral friction is assumed to develop
(ii) Calculate the co-efficient of friction needed if no super elevation is provided.
(iii) Calculate the equilibrium super-elevation if the pressure on inner and outer wheels should be equal.
(06 Marks)

Module-3
5 a. List and explain the desirable properties of subgrade soil.
(05 Marks)
b. List and explain the various design factors to be considered for pavements.
(05 Marks)
c. A load penetration values of CBR tests conducted or specimen of a soil sample are given below. Determine the CBR value of soil, if 100 divisions of load represents 190 kg and in the calibration chart of proving ring.

Penetration of plunger, in mm	0.0	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0	7.5	10.0	12.5
Load dial readings (Divisions)	0	8	1	23	29	34	37	42	48	57	63	67

6 a. Explain the desirable propertieso aggregates to be used indovement construction.
b. Explain the significance of ESWL in pavement design.
(05 Marks)
c. Calculate the stresses interior, edge and corner rogions of a cement concrete pavement using Westergaard's stess equation. Use the folmowing data; wheel load, $\mathrm{P}=5100 \mathrm{~kg}$, Modulus of elastivity, $\mathrm{E}=3 \times 10^{5} \mathrm{~kg} / \mathrm{cm}^{2}$, Pavement thickness, $\mathrm{h}=18 \mathrm{~cm}$, Poisson's ratio of concrete, $\mu=0.15$, Modulus of subgradeaction, $k=6 \mathrm{~kg} / \mathrm{cm}^{3}$, Radius of contact area, $\mathrm{a}=15 \mathrm{~cm}$.
(06 Marks)

Module-4

7 a. Briefly explain the different types of avement construction.
(08 Marks)
b. Explain the construction steps for cement concrete paverment slab.
(08 Marks)

8 a. Explain the constructionsteps for water boundmacadam roads.
(08 Marks)
b. Write a short note on the following :
(i) Bituminous macadam
(ii) Bitumithous concrete
(iii) Prime coat

Module-5
(iv) Seal coat
(08 Marks)

9 a. What are the requirements of highway drainage system?
(05 Marks)
b. Explain the various road usen benefits of highwaymprovements.
(05 Marks)
c. The inaximum quantity of yaver expected in one of the open longitudinal drain on clayey soil is $0.9 \mathrm{~m}^{3} / \mathrm{sec}$. Design the cross-section of trapezoidal drain, assuming the bottom width of the trapezoidal section to be 1 m and cross slope to be 1 vertical to 1.5 horizontal. The allowable velocity flow in the drain is $4 \mathrm{~m} / \mathrm{sec}$.
(06 Marks)

10 a. Briefly explait the types of crossdranage structures.
(05 Marks)
b. Describe the yarious methods of economic analysis of a highway.
(05 Marks)
c. Compare the annual costs of two types of pavement structures (i) WBM with thin bituminous surface at total eost of Rs. 2.2 lakhs per km , life of 5 years, interest at 10%, salvage value of Rs. 0 ? lakhs after 5 years; Annual average maintenance cost of Rs. 0.35 lakhs per km and (ii) Bituminous macadam base and bituminous concrete surface, total cost of Rs. 4.2 lakhs per km, life of 15 years, interest at 8%, salvage value of Rs. 2 lakhs at the end of 15 years; Annual average maintenance cost Rs. 0.25 lakhs per km.
(06 Marks)

15CV651

Sixth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Solid Waste Management

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. With a neat schematic diagram, explain the functional elements of solid waste management.
(10 Marks)
b. Estimate the energy content of a solid waste sample in unit energy on dry basis and ash free dry basis, assume ash 5%.

Component		\% by mass	\% moisture content
Food waste	15	70	4650
Paper	45	06	16750
Cand board	10	05	16300
Clastics	10	02	32600
Garden trimming	10	60	6500
Wood	05	20	18600
Tincans	05	03	700

(06 Marks)

2 a. With a neat schematic diagram explain
i) Hauled container system
ii) Stationary container system.
(10 Marks)
b. An area consisting of 1000 houses ef average 5 person per home is contributing solid waste to a transfer station designed for a week. The waste is carried in 2 types of vehicle i.e., compactor tracks and flat bed trueks whose volume are 15 and $1.15 \mathrm{~m}^{3}$ with their densified of the material is 400 and $50 \mathrm{~kg} / \mathrm{m}^{3}$ respectively. Assuming 10 compactor trucks loads and 40 flat bed trucks loads perweeks. Estimate the unit waste generation rate.
(06 Marks)

Module-2

3 a. Explain the following mocessing techniques briefly:
i) Mechanical volume reduction
ii) Mechanical size reduction.
(10 Marks)
b. Explain chemieal volume reduction.
(06 Marks)

OR

4 a. Give list of component separation techniques, explain them.
(10 Marks)
b. What are 3T's of incineration process? Explain them.
(06 Marks)

Module-3

5 a. Explain the following composting methods:
i) Bangalore method
ii) Indore method.
(10 Marks)
b. With a ateatsketch, explain the trench method of sanitary land filling.

OR

6 a. Discuss the important affecting the aerobic composting process.
(10 Marks)
b. Determine the landfill area required for municipality with a population of 50,000 given that solid waste generat on $=360 \mathrm{gm} /$ person/day compacted density of landfill $=504 \mathrm{~kg} / \mathrm{m}^{3}$. Average depth off compacted solid waste $=3 \mathrm{~m} *$
(06 Marks)

Module-4

(10 Marks)
7 a. Explain briefly the bio medical wastedassification and disposal techniques.
(06 Marks)
b. Write a note on: i) Hazardous waste; in ih Construction waste.

OR

8 a. Explain the Cell vent and Well vent methods of controllinggas movement in land fills.
b. Define E-waste. Lis: the sources and disposal methods of E-waste.

Module-5

Explain any four tyres of incinerators.
(16 Marks)

OR

10 a. Define pyrolysis. With the help of flow chart explain the process of pyrolysis. (08 Marks) b. Explain the various factors to be considered in selection of asite for sanitary land fill.
(08 Marks)

USN

15CV661

Sixth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Water Resources Management

Time: 3 hrs .

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Explain Hydrologic cycle, with neat sketch.
(08 Marks)
b. What is an Aquifer? Explain various types of aquifers with sketches.
(08 Marks)

OR

2 a. What is Scarcity of water? Give causes and effects of scarcity of water.
(08 Marks)
b. Write a detailed note on Indian water resources.
(08 Marks)

Module-2

3 a. Explain the need of Water Resources Management.
(06 Marks)
b. Give three approaches of planning. Discuss the advantages of each one.
(10 Marks)

OR

4 a. List various aspects of planning of water resources. Explain in detail.
(08 Marks)
b. In adaptive integrated policies, which are the questions to be answered by the planners and managers?
(08 Marks)

5 a. Give Integrated Water Resources Management (IWRM) definition as put up by Global Water partnership (GWP). Also give Dublin principles.
(08 Marks)
b. Explain types and forms of private sector involment in IWRM.
(08 Marks)

OR

6 a. Explain the frame work of IWRM, developed by GWP, consisting of three 'E`s. (08 Marks)
b. Give IWRM tools of implementation.
(08 Marks)
Module-4
7 a, Write in detail about National Water policies.
(08 Marks)
b. Give a broad roadmap for implementation of water policies. (08 Marks)

OR

8 a. Write a note on the role of commenity based organization" in WRM. (08 Marks)
b. Explain Water laws, Policies and Administration in India.

Module-5

9 a. Explain various methods of Rain water harvesting.
(08 Marks)
b. Write in detail about Micro catchment, with neat sketch.

OR

10 a. Give details of farm pond, as a water harvesting structure.
(08 Marks)
b. How percolation tanks help in water harvesting? Give the design considerations for the same.
(08 Marks)
,

USN

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Municipal and Industrial Wastewater Engineering

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.
Module-1
1 a. Explain the need for Good sanitation. Describe types of sewerage system and their suitability.
(10 Marks)
b. Explain factors affecting wet weather flow and the effects of flow variations on the design of sewerage system.
(06 Marks)

OR

2 a. Define Sewer Appurtenances and explain with neat sketch construction and working of manhole.
(06 Marks)
b. What do you understand by the term Low - cost treatment?
(02 Marks)
c. Explain the following with sketches:
i) Septic tank
ii) Oxidation pond.
(08 Marks)

Module-2

3 a. Explain briefly the dilution method of disposal of sewage. What are the factors which influence the choice of the method to be adopted?
(06 Marks)
b. Design a sewer to serve a population of 36,000 , the daily per capita water supply allowance being 135 lt , of which 80%, find its way into the sewer. The slope available for the sewer to be laid is I in 625 and the sewer should be designed to carry four times the dry weather flow, when running fill. What would be the velocity of flow in the sewer when running full?
(10 Marks)

OR

4 a. Discuss in details the process Deoxygenation and Reoxygenation with respect to self purification of Natural water with a neat sketch.
(08 Marks)
b. Writé short notes on :
1 1) Sewage sickness
4
ii) Sewage farming.
(08 Marks)

Module- $\mathbf{3}$

5 a. Write the flow diagram employed for a municipal wastewater treatment plant. Indicate the importance of each unit indicated in the flow diagram.
(10 Marks)
b. Explain the importance of screens and types of screens in the sewage treatment process.
(06 Marks)

OR

6 a. Determine the size of the High rate Tricking Filters for the following data :
i) Sewage flow $=4.5 \mathrm{MLD}$
ii) Recirculation ratio $=1.5$
iii) BOD of Raw sewage $=250 \mathrm{mg} / \mathrm{L}$
iv) BOD removal in primary tank $=30 \%$.
v) Final effluent BOD desired $=30 \mathrm{mg} / \mathrm{L}$.
(08 Marks)
b. Explain briefly the different stages of sludge digestion process in a "Digestor". With a neat sketch, explain the constructional details of sludge digestion tank.
(08 Marks)

Module-4

7 a. Differentiate between Domestic sewage and Industrial waste.
(08 Marks)
b. Explain the methods used for Neutralization of Acidic and Alkaline waste.
(08 Marks)

OR

8 a. Briefly explain the effects of Industrial wastewater on sewage treatment plants.
(08 Marks)
b. Explain different methods of Strength Reduction.
(08 Marks)
9 a. With process flow diagram, explain the cotton textile mill wastes origin.
b. Enumerate the effec:s of discharging paper and pulp industrial wastes into water bodies or sewers.
(08 Marks)

OR

10 a. With process flow diagram, explain the origin of wastes from Cane Sugar mill. List its characteristics.
b. With a flow diagram, explain the units used for treatment of Dairy waste on receiving stream.
(08 Marks)

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Design of RCC and Steel Structures

Time: 3 hrs .
Note: 1. Answer any TWO full questions, choosing one full question from each module.
2. Use of IS-456, IS-800 SP (6) and Steel tables are permitted.

Module-1

1 Design a slabtype rectangular combined footing for two columns of size $300 \mathrm{~mm} \times 450 \mathrm{~mm}$ and $300 \mathrm{~mm} \times 600 \mathrm{~mm}$, subjected to axial loads of 650 kN and 900 kN respectively. The columns are spaced at $3.6 \mathrm{~m} \mathrm{c} / \mathrm{c}$. The width of the footing is restricted to 1.8 m . Use M20 grade concrete and Fe4 15 grade steel. Assume SBC of soil $=160 \mathrm{kN} / \mathrm{m}^{2}$.
(40 Marks)

OR

2 Design a Cantifever retaining wall to retain an earth embankment with a horizontal top 3.50 m above ground level. The unit weight of back fill is $18 \mathrm{kN} / \mathrm{m}^{3}$. Angle of internal friction $\phi=30^{\circ}$. SBC of soil $=180 \mathrm{kN} / \mathrm{m}^{2}$. Take coefficient of friction between soil and concrete $=0.55$. Adopt M20 grade concrete and Fe415 grade steel. Depth of foundation $=1.0 \mathrm{~m}$.
(40 Marks)

Module-2

3 Design a roof truss shown in Fig. Q3 with forces in each member of the truss are given in table Q3. The size of RC column supporting the truss is $300 \mathrm{~mm} \times 300 \mathrm{~mm}$. Use M20 grade concrete for column. Design the truss using bolt of M16, property class 4.6 for connections and also design anchor bolts.
(40 Marks)

OR

4 Design a simply supported crane gantry girder for the following data: The crane is electrically operated. Yield stress of steel is $250 \mathrm{~N} / \mathrm{mm}^{2}$.
(i) Span of Crane girder $=20 \mathrm{~m}$
(ii) Effective span of gantry girder $=7.4 \mathrm{~m}$
(iii) Capacity of crane $=220 \mathrm{kN}$.
(iv) Self weight of Crane girder excluding crab $=200 \mathrm{kN}$.
(v) Weight of $\mathrm{Crab}=60 \mathrm{kN}$.
(vi) Wheel base distance $=3.4 \mathrm{~m}$
(vii) Minimum hook approacb $=1.2 \mathrm{~m}$.
(viii) Self weight of rail $=300 \mathrm{~N} / \mathrm{m}$
(ix) Height of rail $=75 \mathrm{~mm}$

Gantry girder is to be supported on RCC column bracket of size $300 \mathrm{~mm} \times 450 \mathrm{~mm}$. Size of column $300 \mathrm{~mm} \times 600 \mathrm{~mm}$.
(40 Marks)

15 CV 73
Seventh Semester B.E. Degree Examination, Dec. 2018 fisan. 2019 Hydrology and Irrigation Engineering

Time: 3 hrs.

Note: 1. Answer FIVE full questions, choosing one full question from each module. 2. Assume missing data suitably.

Module-1

1 a. With engineering representation, explain hydrologic eycle along with processes involved in it.
(06 Marks)
b. Explain how consigtency of rainfall data is checked using double mass curve technique.
(05 Marks)
c. The average annual rainfall of 5 raingauge stations in a basin are $89,68,54,45,41$ and 55 cm . If the error in the estimation of basin rainfall should not exceed 10%. How many additional raingauges should be installed in the basin.
(05 Marks)

2 a. Define precipitation. List its types and explain with neat sketch how its amount is measured using Symon's raingauge ${ }_{*}$
(08 Marks)
b. What are the importances of hydrology? With heat sketch explain mass curve of rainfall and rainfall hyetograph.
(08 Marks)

Module-2

3 a. Explain how evaporation amount measured using IS class-A pan? List the factors affecting it.
(08 Marks)
b. What is evapotranspiration? Write its measurement using Lysimeter method, with sketch.
c. List the factors affecting exapotranspiration. Write Blaney-Criddle equation used to estimate ET.
(03 Marks)
a. Define infiltration. With neat sketch, explain
(06 Marks)
b. Write a Horton's infiltration equation used to estimate infiltration rate.
(02 Marks)
c. For a storm of 3 fr duration the rainfifl rates are as follows:

Time Period (minutes)	30	30	30	30	30	30
Rainfall rate $(\mathrm{cm} / \mathrm{hr})$	1.4	3.4	4.8	3.2	2.0	1.2

If the surface run off is 3.4 cm determine the ϕ-index and W -index assume initial ϕ-index is more than $1.4 \mathrm{~cm} / \mathrm{hr}$.
(08 Marks)

Module-3

5 a. What is runoff? Liss and explain factors affecting it.
(08 Marks)
b. Define hydrograph. With sketch explain component parts of hydrograph.

OR

6 a. The hourly ordinates of a two hour unit hydrograph are given below. Derive a 6 -hours unit hydrograph for the same catchment.
(08 Marks)

Time (hours)	00	01	02	03	04	05	06	07
Discharge (Cumecs)	00	1.0	2.7	5.0	8.0	$\overline{9.8}$	9.0	7.5

Time (hours)	08	09	10	11	12	13	14	15
Discharge (Cumecs)	6.3	5.0	4.0	2.9	2.1	1.3	0.5	00

b. Find out the ordinates of a storm hydrograph resulting from a 3 hour sterm with rainfall of 3 , 4.5 and 1.5 cm during subsequent 3 hour intervals. The ordinates of unit hydrograph are given in the table below.

Hours	00	03	06	69	12	15	18
OVH (cumecs)	00	90	200	550	450	350	260
Hours	21	24	03	06	09	12	
OVH (cumecs)	190	1	0	80	45	20	00

Assume an initial losfof 5 mm infiltration index of $5 \mathrm{~mm} / \mathrm{hr}$ and base flow of 20 cumecs.
(08 Marks)

Modute-4

7 a. Define Irrigation. List and explain benefthand ill effects of irrigation.
(08 Marks)
b. What are Duty, delta and base period? Explain factors affecting Duty of water.
(08 Marks)

OR

8 a. What is Irrigation efficiency? Detine different efficiencies of Irrigation water.
(05 Marks)
b. What are flow Irrization and Lift Irrigations. Explain types of flow irgigations.
(08 Marks)
c. (i) Give relationship bween Duty, delta and base period.
(ii) Write a short note on frequency of Irrigation.
(03 Marks)
Modut-5
9 a. What is canal? List its types and explain with neat sketch its classification based on Alignment.
(08 Marks)
b. Explain different storage zones of reservoir with neat sketch.
(08 Marks)

10 a. The Channel section is tobedersigned for the following data:
Discharge, $\mathrm{Q}=5$ cumecs
Lacy's silt factor, $\mathrm{f}=1$
Side slope $=1 \frac{1}{2} \mathrm{H}$ to f V
Also determine fie bed slope of the channel.
(08 Marks)
b. Explain hydrolegical investigations of reservoir planning. List the points to be considered for selectionsof site for a reseryoir.
(08 Marks)

CBCS SCHEM

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Design of Bridges

Time: 3 hrs.

Note: 1. Answer amy Filv E full questions, choosing
 ONE full question from each module.

2. Use of IS-456, IRC-5, IRC-6, IRC-21, IS1343, pigeaud's curves and relevant charts allowed,

Module-1

1 a. How are the bridges classified, briefly explain.
(10 Marks)
b. List the various loads to be considered in the design of bridges.
(06 Marks)
2 Briefly explain the following terms:
i) Linear waterway
ii) Economid span
iii) Afflux
iv) Scequr Depth.

(16 Marks)

3 Design a deck slab for the following details:
Carriage way $\quad=$ Tyo lare (7.5 m wide)
Foot paths $\quad=1$ mron either side
Clear span $\quad=6 \mathrm{~m}$
Wearing coat , $=80 \mathrm{~mm}$
Width of bearing $=400 \mathrm{~mm}$

Materials : M25 grade concrete and Fe 1 I grade HYSD bars
Loading : IRC class AA tracked wehicle.
(16 Marks)

4 Design a SKEW slab culvegt te suit the following data:
Cleat span
Width of carriage way $=7.5 \mathrm{~m}$
Overall depth of $=540 \mathrm{~mm}$
$\begin{array}{ll}\text { Wearing coat } & =80 \mathrm{~mm} \\ \text { Skew angle }\end{array}$
Loading: RCcclass AA tracked veliicle
Materials : M20 grade concrete and Fe415 HYSD bars.
(16 Marks)

4) Module-3

Design the 'Deck slab only' for the T-beam bridge for the following data:
Effective span $=16 \mathrm{~m}$; Live Load - IRC class AA tracked; Materials - M25 grade concrete and Fe 415 stee, thickness of wemith coat $=80 \mathrm{~mm}$; Kerbs on either side $=600 \mathrm{~mm}$ wide $\times 300 \mathrm{~mm}$ deep; width of main girder $=300 \mathrm{~mm}$; width of cross girder $=300 \mathrm{~mm}$; spacing of main girders $=2.5 \mathrm{~m} \mathrm{c} / \mathrm{c}$; sketch reinforcement details.
(16 Marks)

1 of 2

OR

6 Design T-beam bricge "cross girder" for the data givend 65 and sketch the reinforcement details.
(16 Marks)

Module-4

7 Design a Reinforced concrete box culvert having a clear vent way 3 m by 3 m . The super imposed dead load on the culvert is $12.8 \mathrm{kN} / \mathrm{m}^{2}$ The Live Load is estimated as $50 \mathrm{kN} / \mathrm{m}^{2}$. Density of soil at site is $18 \mathrm{kN} / \mathrm{m}^{2}$. Angle ofepose $=30^{\circ}$. Adopt M26 grade concrete and Fe415 steel. Sketch the details of reinforvement.
(16 Marks)
OR
8 Design a suitable reinforced conente pipe culvert to suit following data: Discharge through pipe culvert $=1.57 \mathrm{~m}^{3} / \mathrm{s}$ Velocity of flow through pipe $=2 \mathrm{~m} / \mathrm{s}$ Width of road $=7.5 \mathrm{~m}$ Top width of embankment $\quad=1.5: 1$ Bed level of strean $\quad=100.00 \mathrm{~m}$ Top of embankmét $\quad=103.00 \mathrm{~m}$. Loading : IRC ctass ${ }^{2}$ A Wheeled vehicle.
(16 Marks)

Module-5

9 Verify the stafility of the abutment shown in Fig.Q.9. The other salient details are given below:
Material
Density of soil
Coefficient of friction Angle of repose of soil
 Live Load on bridge
Span of bridge

$$
\begin{aligned}
& =\text { Concrete } \\
& =18 \mathrm{kv}^{3}
\end{aligned}
$$

Angle of friction thetween the soil and concrete $=18^{\circ}$
The bridge deck eonsists of three longty inal girders of 14 m depth with a deck slab of 200 mm depth.
(16 Marks)

10 Write short notes en:
a. Bridge bearings
b. Hinges
c. Expansion Joints
(16 Marks)

USN

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Ground Water and Hydraulics

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing
 ONE full question from each module.
 Module-1

1 a. Explain the vertical distribution of ground water with a neat sketch.
(06 Marks)
b. Define the terms : i) Juvenile water ii) vadose water iii) cofnate water iv) meteoric water.
(06 Marks)

2 a. What is an aquifer? Explain the different types of aquifers with neat sketches.
(12 Marks)
b. Define the terms: i) aquifuge ii) aquictude with example.
(04 Marks)

Module-2

3 a. Explàn Dárcy's Law and discuss the validity and limitations.
(06 Marks)
b. Explain storage coefficient with a neat diagram and derive an expression for storage coefficient of an confined aquifer.
(10 Marks)

OR

4 a. What is permeability? Explain the determination of permeability by constant head permeameter.
(08 Marks)
b. An artesian aquifer of 20 m thick has a porosity of 20% and bulk modulus of compression $10^{8} \mathrm{~N} / \mathrm{m}^{2}$. Estimate the storage coefficient of the aquifer. What fraction of this is attributable to the expansibility of the water? Take elasticity of water $\mathrm{K}_{\mathrm{W}}=2.13 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$.
(08 Marks)

Module- 3

5 a. Derive an equation for discharge for the case of steady radial flow into an unconfined aquifer using Duputis theory. List the assumptions and limitations.
(12 Marks)
b. A tube well of 300 mm diameter penetrates fully a confined aquifer. The length of the strainer is 25 m . Catculate the yield from the well under a drawdown of 4 m . The coefficient of permeabifity of aquifer is $50 \mathrm{~m} / \mathrm{day}$. Assume radius of circle of influence $R=200 \mathrm{~m}$.
(04 Marks)

6 a. Explain Thei's method to determine aquifer constants S and T for unsteady radial flow towards well.
(10 Marks)
b. A well is located m a 25 m confined aquifer of permeability $30 \mathrm{~m} /$ day and storage coefficient 0.005 . If the well is being pumped at the rate of 1750 liters per minute, calculate the drawdown at a distance of 100 m from the well after 20 hrs of pumping. Take $W(u)=3.35$.
(06 Marks)

$$
1 \text { of } 2
$$

Module-4

7 a. List the various surface and subsurface methods of ground water exploration.
(04 Marks)
b. Describe in detail, the exploration of groundwater by electrical resistivity method. (12 Marks)

OR

8 a. Enumerate the groundwater exploration by seisonic refraction method.
(10 Marks)
b. Briefly explain any two methods of logging.
(06 Marks)

Module-5

9 a. Explain in brief the advantages and disadvantages of open wells and tube wells.
b. What are the factors considered for the selection of pumps for shallow and deep wells?
(04 Marks)
c. Design an open well in fine sand to give a discliarge of 0.003 cumec when worked under a depression head of 2.5 m Take fine sand value $=0.5 \mathrm{~m}^{3} / \mathrm{hr} / \mathrm{m}^{2}$.
(06 Marks)

10 a. With the help of a reat sketch, explain the working of a submersible pump.
(10 Marks)
b. What is importance of artificiaf recharge? Explain yarious methods of ground water recharge.

GBCgserinis

15CV744

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Structural Dynamics

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing one full question from each module.

1 a. Differentiate between : i) Forced vibrations and free vibrations
ii) Random excitation and harmonic excitation
iii) Oscillation and vibration
(06 Marks)
b. A body of 10 kg is supported on spring of stiffness $300 \mathrm{~N} / \mathrm{m}$ and a dash-pot is connected to it, which produces a resistance of 0.04 N at a velocity of $0.02 \mathrm{~m} / \mathrm{s}$. In what ratio will be the amplitude of vibration feduces after 5 cycle?
(10 Marks)

2 a. Derive an expression for motion $x(t)$ of an under damped Single Degree of Freedom system (SDOF) subjected to free vibration.
(10 Marks)
b. A diver weighing 90 kg stands at the end of a cantilever diving board of span 1 m . The diver oscillates at a frequency of 2 Hz . What is the flexural rigidity of the diving board? ($\mathbf{0 6}$ Marks)

Module-2

3 a. What is magnification factore Explain its dependence on frequency ratio and damping ratio with a qualitative graph relating to all the above fhree quantities.
(08 Marks)
b. Source of vibration with frequency 300 Hz is to be isolated from an equipment of mass 15 kg . Determine the stiffess of spring if 50% of vibration is to be isolated, damping is negligible.
(08 Marks)

4 a. Derive an expression for the forcetransmitted to the foundation in a damped Single Degree of Freedom (SDOF) system due to harmonic force, $E(t)=$ Fosincot.
(08 Marks)
b. A macilime weighing 600 N tsupported by springs of stiffness $\mathrm{K}=20 \mathrm{~N} / \mathrm{mm}$ and dampers of damping coefficient, $C \quad 0.01 \mathrm{~N}-\mathrm{s} / \mathrm{mm}$. A harmonic force of amplitude 20 N is applied. Gempute the resonant amplitude.
(08 Marks)

Module-3

5 Determine thematural frequencies and mode shapes for structure as shown in Fig Q5. Draw the mode shapes Given $\mathrm{I}=5 \times 10^{5} \mathrm{~mm}^{4}, \mathrm{E}=2.5 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~m}_{1}=1360 \mathrm{~kg} . \mathrm{m}_{2}=660 \mathrm{~kg}$.

Fig Q5
(16 Marks)

OR
6 Compute the natural frequencies and mode shapes for the shear frame shown in the Fig Q6. Given $\mathrm{EI}=23.83 \times 10^{6} \mathrm{Nm}^{2}$ for all columns.

Fig Q6
(16 Marks)

Determine natural frequencies and steady state response of the multi degree freedom system frame at $\mathbf{t}=0$ I I'sec for the Fig Q7.

Fig Q7
(16 Marks)

8 For a three storeyed shear buitaing subjected to harmonic loading (Fig Q8), compute the response y given the results of the free vibration analysis. Neglect axial deformities in all structural elements. Given. Stiffness of floor: $K_{F}=K_{2}=160 \times 10^{6} \mathrm{~N} / \mathrm{m} ; \mathrm{K}_{3}=240 \times 10^{6}$ N / m. Mass of the floor $\mathrm{M}_{1}=\mathrm{M}_{2}=\mathrm{M}_{3}=20 \times 10^{3} \mathrm{~kg}$ (or $\mathrm{Ns}^{2} / \mathrm{m}$). The natural frequencies are $\mathrm{w}_{1}=43.87 \mathrm{rad} / \mathrm{s}_{\mathrm{s}} \mathrm{w}_{2}=120.15 \mathrm{rad} / \mathrm{s}, \mathrm{w}_{6}=167 \mathrm{rad} / \mathrm{s}$.
The mode shapes are as follows: $\phi_{1}=\left[\begin{array}{c}1 \\ 0.76 \\ 0.34\end{array}\right] \quad \phi_{2}=\left[\begin{array}{c}1 \\ -0.8 \\ -1.16\end{array}\right] \quad \phi_{3}=\left[\begin{array}{c}1.0 \\ -2.43 \\ 2.51\end{array}\right]$.

Fig Q8
(16 Marks)

Module-5

10 Compute the lowest natural frequency of simply supported beam of span 2 m and mass per unit length $500 \mathrm{~N} / \mathrm{m}, \mathrm{EI}=833.33 \times 10^{9} \mathrm{Nmm}^{2}$. Consider the beam as a single element as indicated in Fig 10.

(16 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, D. Belagavi

USN \square
Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Urban Transportation and Planning

Time: 3 hrs.
Max. Marks: 80
Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. What is urbanization? State the causes of urbanization.
(08 Marks)
b. Explain the problems in the urban transportation in the present scenario.
(08 Marks)

2 a. Explain the classification of transit system with example.
(08 Marks)
b. Write a note on the following :
(i) BRTS
(ii) Metro trains
(08 Marks)

Module-2

3 a. Define external cordon line. What factors should be given due weightage in the selection of external cordon line.
(06 Marks)
b. What is zoning? Discuss the points to be kept in mind while doing zoning.
(10 Marks)

4 a. What are the methods of origin and destination study? Explain home interview method in detail.
(08 Marks)
b. What is sampligg? Discuss various types of samplings.
(08 Marks)

Module-3

5 a. Explainin detail the factors governing trip generation and attraction rates. (06 Marks)
b. The following data shows average household size and total trips made per day for a particular zone of studyarea. Develop the trip production equation and also compute co-efficient of correbation.
(10 Marks)

Average Household size	Total trips/day
2	4
3	6
4	7
4	8
6	10

OR

a. Enlist the different methods of trip distribution. Explain in detail average growth factor method.
(06 Marks)
b. Estimate the future trip distribution by Fumess method (up-to two iteration) from the following data:
(10 Marks)

O / D	1	2	3	4	Future trips
1	-	50	60	30	280
2	40	-	70	20	390
3	20	60	-	40	300
4	$\frac{50}{20}$	70	30		220
Future trips	200	500	340	150	

Module-4
7 a. Write a short note on opportunity models.
(06 Marks)
b. The total trips prodiled in and attracted to the three zones A, B and C of a survey area in the design year area tatulated as

Zone	Trips Produced	Trips attracted
A	2000	3500
B	3500	4800
C	4800	2000

It is known that the trips between two zones are inversely proportional to the second power of the travel time between zones, which is 25 minutes. If the trip interchange between zones B and C is 300 . Calculate the trip interchange between zones A and B, A and C, B and A, C and B .
(10 Marks)

8 a. Define modal split and explain in brift the factors affecting modal split.
(10 Marks)
b. Draw the flow diagram for modal split carried out between trip generation and trip distribution.
(06 Marks)

Module-5

9 a. List the various assignment techniques and explain any two methods.
(10 Marks)
b. Explain the application of the traffic assighment.
(06 Marks) bsy

OR

10 a. Discuss the points for the selection of land - use transport model.
(06 Marks)
b. Write a flow chart of fundamental structure of Lowry model and explain the principal components of the model.
(10 Marks)
\square

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Rehabilitation and Retrofitting of Structures

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE ful' questions, choosing ONE full questionfrom each module.

1 a. Explain the following terms:
i) Repair
ii) Rehabilitation
iii) Strengthening
iv) Retrofitting
(08 Marks)
b. What are the causes of distress and deterioration of concrete?
(08 Marks)
Módule-1

- e_{5}

OR

2 a. How do you cąry out physical inspection of distressed concrete structures?
(08 Marks)
b. What is durability of concrete? How do the following affect the durability of concrete:
i) Carbonation
ii) Alkali aggregate reaction
(08 Marks)

Module-2

3 a. List the steps involved inevaluation of structures and explain the different aspect of detailed investigation.
(10 Marks)
b. What are the non destructive test conducted to assess the existing strength of concrete structures? Explainiany one.
(06 Marks)

OR

4 a. Give the classification of tests and different tests that comes under each category to assess existing distress of structures. ${ }^{\text {T }}$
(12 Marks)
b. What are the different situations that call for investigation of structures?
(04 Marks)
rame
Module-3

5 a. Explain the durability factors for humid environment with freezing and frost action.
(04 Marks)
b. Explain in detail regarding mechanism of temperature variation in concrete and their remedial measures.
(08 Marks)
c. Explain different types of cracks.
(04 Marks)

OR

6 a. Explain the importance of concrete cover in RCC structures.
(05 Marks)
b. What are the factors to be considered by the designer at the construction site?
(05 Marks)
c. What preventive measure will ensure protection against corrosion in New Structures?
(06 Marks)

Module-4

7. a. Define maintenance. Explain the importance of maintenanice
(08 Marks)
b. Discuss the rehabilitation techniques that are adopted for structural elements.

OR
8 a. Explain in detail restoration of column by method of Jacketing.
(10 Marks)
b. When do you Retrofit Structures?

9 a. What are the Ideal properties of Repaigmaterial?
b. Explain the following:
i) Epoxy injection
ii) Repair mortars

OR

10 a. Explain the procedure for Repairing Cracks in masonry structures.
(06 Marks)
b. Classify and explain the use of different Techniques for Repair.

Eighth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Advanced Concrete Technology

Note: 1. Answer any RWE full questions, selecting
 atleast TWO questions from each part.
 2. Use of IS 10262-2009 permitted,

PART-A

1 a. Name the Bogue's compounds. Explain their role in strength development.
(08 Marks)
b. Explain the importance of transition zone in concrete
(06 Marks)
c. How do Bingham's parameters help to ascertain rheology of concrete?
(06 Marks)
2 a. What are mineral admixtures? Explain the effect of flyash on hardened state of concrete.
(06 Marks)
b. Explain the method of 'Marsh Cone test' for optimum dosage of super plasticizer.
(08 Marks)
c. Explain the role of
i) Accelerators and
ii) Retarders.
(06 Marks)
3 a. List the salient features of the revised IS 10262-2009 for concrete mix design.
b. What are the basic consideration for Mix proportioning of concrete?
(08 Marks)
c. Explain the properties affect in the mix design of contrete.
(06 Marks)
(06 Marks)
4 a. What is Carbonation of concrete? How does it influence the corrosion of steel?
(08 Marks)
b. Discuss in brief Alkali - aggregate reaction and what precautions are necessary to minimize
(06 Marks)
c. What are the factors influencing sulphate attach on concrete?
(06 Marks)

PART - B

5 a. What is RMC? Explain briefly methods of concreting and advantages of RMC. (08 Marks)
b. What is figh volume of flyash concrete? Mention its applications.
(06 Marks)
c. Enumerate the need for selfcompacting concrete and mention its applications.
(06 Marks)
6 a. What are the factors affecting the properties of fibre reinforced concrete (FRC)? (06 Marks) b. What are the different types of fibres used in concrete and mention its applications.
(08 Marks)
c. What is Ferrocement? List the various applications of ferro cement.
(06 Marks)
7 a. Explain the Light Weight concrete and High density concrete.
(10 Marks)
b. Discuss in brief the properties of high performance concrete in fresh and hardened state.
(10 Marks)
8 a. Why Non - destructive Testing is required? Explain the the Ultrasonic pulse velocity method.
(10 Marks)
b. What are the factors affecting the strength of test specimen under test? Explain the effect of H/D ratio on strength.
(10 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technolog, D. Belagavi

10 CV 82
Eighth Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Design and Drawing of Steel Structures
Time: 4 hrs.
Max. Marks: 100
Note: 1. Answer any ONE full question, each from PART-A and PART-B.

2. Use of IS-800, SP(6)-1 and steel tables is permitted.

PART - A

1 a. An ISMB 350 is connected to the flange of column ISHB 400 using 20 mm diameter black bolts of Grade 5.6. Two angles ISA $110 \times 110 \times 8 \mathrm{~mm}$ were used for framed connection. The length of angle is 260 mm . Four bolts were used to connect the angles with the column. Also another set of four bolts were used to connect angles with the web of the beam. Draw to a suitable scale.
i) Front view and
ii) Side view with all details.
(15 Marks)
b. A stiffened seated connection has the following details. An ISMB500@869 N/m is connected to the web of column ISHB300@630 N / m using welds. The clip angle ISA $100 \times 100 \times 6 \mathrm{~mm}$ of length 120 mm was used. The size of weld was 5 mm . The seat plate of size $200 \times 90 \times 18 \mathrm{~mm}$ stiffening plate of thickness 12 mm and length 180 mm was used. The width of stiffener plate was equal to the width of seat plate and reduced to 50 mm at the bottom. Use 12 mm fillet weld. Draw to a suitable scale.
i) Front view and
ii) Side view
(15 Marks)
2 a. A column section ISHB250@547N/m is supported over another column section ISHB300 $@ 724 \mathrm{~N} / \mathrm{m}$. The bearing plate thickness 50 mm . Use splice plate of thickness 6 mm . Use 8 numbers of 20 mm bolt on one side of the joint for each flange. Draw to a suitable scale.
i) Front view and
ii) Side view
($\mathbf{1 5}$ Marks)
b. A gusseted base for ISHB400@ $822 \mathrm{~N} / \mathrm{m}$ with flange plate of $300 \times 12 \mathrm{~mm}$ one on each flange to be detailed with the data.
i) Base plate $720 \times 720 \times 16 \mathrm{~mm}$
ii) Gusset plate 16 mm thick and 360 mm depth
(ii) Gusset angles 2ISA $150 \times 115 \times 15 \mathrm{~mm}$

Gusset plate and the flange plate connected by 10 bolts on one side of columns. Provide 12 bolts for confecting gusset plate to gusset angle. Diameter of bolts 20 mm . Draw to a suitable scale.
i) Sectionalelevation
ii) Side view
(15 Marks)

PART-B

Design a welded plate girder to carry a superimposed load of $50 \mathrm{kN} / \mathrm{m}$ and two concentrated loads of 200 kN each at one third span points. The effective span of the plate girder is 20 m . Assume that the girder is laterally supported throughout its length.
(40 Marks)
Draw to a suitable scale.
i) Half sectional elevation
ii) $\mathrm{C} /$ section at midspan and at support.
(30 Marks)

4 Design a simply supported Gantry girder to carry a superimposed load for the following data:
Span of the girder $=20 \mathrm{~m}$
Span of the gantry girder $=7 \mathrm{~m}$
Capacity of the crane $=220 \mathrm{kN}$
Self weight of crane excluding the $\mathrm{crab}=200 \mathrm{kN}$
Weight of the crab $=60 \mathrm{kN}$
Wheel base distance $=3.4 \mathrm{~m}$
Minimum hook approach $=1.1 \mathrm{~m}$
Self weight of rail $=0.3 \mathrm{kN} / \mathrm{m}$
Height of rail $=75 \mathrm{~mm}$
(40 Marks)
Draw to a suitable scale:
i) $\mathrm{C} /$ section of the gantry gitder
ii) Plan details
(30 Marks)

Eighth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Pavement Design

Time: 3 hrs.
Note: Answer FIVE full questions, selecting at least TWQ miliquestions from each pait.

PART-A

4. Max. Marks:100

1 a. With the help of sketches mention the various layers of flexible and rigid pavements. Write the functions of each layer.
(10 Marks)
b. Distinguish between highwăy pavement and airfield pavement.
(10 Marks)
2 a. State assumptions fimitations of Boussinesq's theory.
(06 Marks)
b. Find the vertical stress distribution in a homegeneous pavement upto a depth of 60 cms . Due to a bullock cart with wheel load 600 kg on a vertical plane.
i) Along the line of action of load.
ii) 5 cm away from the line of action of load.
(14 Marks)
3 a. Explân the ESWL concept with neat figure.
(08 Marks)
b. Find the ESWL by graphical methoid for a dual wheef load assembly with 2000 kg on each wheel and tyre pressure of $6.5 \mathrm{~kg} / \mathrm{km}^{2}$ if the centreto centre spacing between the wheels is 25 cm . Consider the pavenerthickness of 25 cm athy 45 cm . (Use plain graph paper).
ection by triaxial leansus method using the following data:
4 a. Design the pavement section by triaxial leansus method using the following data:
Wheel load $=41 \mathrm{kN}$
E-value of subgrade soil $=10 \mathrm{~N} / \mathrm{mm}^{2}$
E -value of base course material $=40 \mathrm{~N} / \mathrm{mm}^{2}$
E-value of wearing course $=100 \mathrm{Nmm}{ }^{2}$ which is 7.5 cm thick
Traffic coelficient $=1.5$
Rainfal ${ }^{\text {reoefficient }}=0.9$
Raditis of contact area $=160 \mathrm{~mm}$
Design deflection $=2.5 \mathrm{~mm}$
sketch the pavemert section.
(10 Marks)
b. Explain the desigh of flexible pavement by revised CBR method as per IRC quick lines.

(10 Marks)

5 a. Explain the following:
i) Types and objectives efjoints in cement concrete pavement.
ii) Critical combination of stress in a CC pavement.
(10 Marks)
b. A cement concrete pavement has a thickness of 20 cms , has 2 lanes of slab width a 3.35 m coefficient of friction between slab and subgrade $=1.5$. Weight of slab $=480 \mathrm{~kg} / \mathrm{m}^{2}$. Allowable working stress in steel $=1400 \mathrm{~kg} / \mathrm{km}^{2}$. Maximum permissible bond stress,
i) Plain bars, $7.5 \mathrm{~kg} / \mathrm{km}^{2}$.
ii) Deformed bars, $24 \mathrm{~kg} / \mathrm{cm}^{2}$. Design a tie - bar system.
(10 Marks)

6 a. Explain different types of stresses due to wheel loads.
(10 Marks)
b. Using the data given below, calculate the whe toad stresses at i) Interior ii) Edge and iii) Comer regions of a cement concrete pavement using Westergaard's stress equation. Also determine the probable location where the crack is likely to develop due to eomer loading. Wheel load $\mathrm{P}=5100 \mathrm{~kg}, \mathrm{E}_{\mathrm{C}}=3.0 \times 10^{5}{\mathrm{~kg} / \mathrm{mm}^{2}}^{2}$, Pavement thickness $\boldsymbol{t}=18 \mathrm{cms}$, Poisson's ratio of concrete $=\mu=0.15, K=6.0 \mathrm{~kg}^{3}$ and radius of contact area, $a=15 \mathrm{~cm}$.

7 a. Explain Benkelman Beam deflection method.

(10 Marks)
b. What are the requirements of aitport pavement?

8 a. Explain failures in flexible pavements.
b. Write short notes or: i) Mud pumping
ii) Structural cracks.

USN

$10 \mathrm{CV835}$

Eighth Semester B.E. Degree Examinationt, Dec.2018/Jan. 2019 Industrial Waste WaterTreatment

Time: $\mathbf{3}$ hrs.

Note: 1. Answer FIVE fullquestions, selecting at least TWO full questions from each part.
 2. Draw neat laheled diagram wherever necessary
 3. Suitable alata can be assumed.

1 a. Write the effect of industrial waste water on municipal sewage treatment plants. (05 Marks)
b. Define stream sampling and explain in brief the factors to be considered during sampling.
(05 Marks)
c. Briefly explain effluent and stream standards and legislation to control water pollution.

2 a. Explain self purification o streams with oxygen sag curve.
(10 Marks)
b. A waste watêr effluent of $570 / / \mathrm{s}$ with a BOD $=55 \mathrm{mg} / l, \mathrm{DO}=2.5 \mathrm{mg} / l$ and temperature of $25^{\circ} \mathrm{C}$ enters tiver where thew is $30 \mathrm{~m}^{3} / \mathrm{sec}$ and $\mathrm{BOD}=4 \mathrm{mg} / l . \mathrm{DO}=8.4 \mathrm{mg} / l$ and temperature of $17^{\circ} \mathrm{C}$. Deoxygenation constant for the waste is 0.10 per day at $20^{\circ} \mathrm{C}$. The velocity in water in the river downstream is $0.15 \mathrm{~m} / \mathrm{s}$ and depth of flow is 1.2 m . Determine the following after mixing of wastewater. i) Combined discharge; ii) BOD of mix; iii) D.O of mix and iv) Temperature of mix.
(10 Marks)
3 a. Write short notes on: i) Strength reduction; ii) Neutralization.
(10 Marks)
b. Equalization and proportioning is of much impotance in industrial waste water. Justify with proper procedure.
(10 Marks)
4 a. Write short notes on: i) Reverse osmosis, ii) Dialysis.
(10 Marks)
b. Explain the methōds for treatment and disposal of sludge solids.
(10 Marks)

5 a. Write advantages of combined treatment of industrial waste water with domestic waste.
(05 Marks)
b. Explain the stages of Tanning process.
(05 Marks)
c. Write the procedure with suitable example for discharge of partially treated and completely
. Ireated wastes into streams.
(10 Marks)
6 a. Describe the characteristics and treatment of waste water from a sugar industry.
(10 Marks)
b. With a flow diagram explain treathent of cotton textile mill wastes.
(10 Marks)
7 a. Explain the treatment methods to treat waste water generated from steel industry with a flow diagram and add a note on ts waste water characterization.
(10 Marks)
b. Write short notes on:
, 4 lawer
i) Reusing and recycling of waste water.
ii) Characteristics of Indian Tannery Industrial Waste Water.
(10 Marks)
8 a. With a flow diagram, explain the treatment of combined antibiotics and chemical wastes.
(10 Marks)
b. Write the chafacteristics of combined effluent of a pulp and paper mill and add its effects of wastes on severs.
(10 Marks)

Eighth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Urban Transport Planning

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

1 a. Explain the scope of Urban Transport Planning.
(05 Marks)
b. Discuss the interdependence of the land use and traffici
(07 Marks)
c. With a help of flow chart explain system approach to Urban planning.
(08 Marks)
2 a. Explain the various stages involved in transport planning.
(10 Marks)
b. The following ifformation was obtained froma transportation survey of a town, develop a linear regression model for estimating the trips from each zone. If the population in a particularzone increases to 60,000 predict the expected trip generation from that zone.

Zone	1	2	3	4	5	6	7	8
X	52	56	62	66	44	60	40	50
Y	24	22	34	30	24	30	18	26

(10 Marks)

3 a. Define a 'Zone'. Mention the different factors sconsidered in dividing the whole area into zones.
b. With a neat sketch, explain the road side interview survey method.
(10 Marks)
(10 Marks)
4 a. Explain the factors governing the trip generation and attraction.
(10 Marks)
b. Explain the category analysis with the assumptions. Mention the advantages and disadvantages of this method.
(10 Marks)

PART-B

5 a. Qbtain the future trip table by using : i) Uniform Rate method fačtor method.
ii) Average growth
(10 Marks)

The future trips generated in zone $1,2,3$ are expected to be $300,180,320$.
b. The number of trips produced in and attracted to the three zones 1,2 and 3 are tabulated as follows:

As a result of calibration the friction factors to be associated with the impedance values between the various zones have been found to be as follows:

Impedance units	1	2	3	4	5	6	7	8
Friction factors	82	52	50	41	39	26	20	13

0	D	1	2
	3		
$\frac{1}{2}$	50	40	60
2	40	20	30
3	60	30	20

Zone	1	2	3
Trips produced (Pi)	14	33	28
Trips Attracted (Aj)	33	28	14

-

The impedance values between the various zones can be taken from the following matrix.

$O D$	1	2	3
1	8	1	4
2	3	6	5
3	2	7	4

Distribute the trips between the variouls zones. (At least two iterations)
(10 Marks)
6 a. Explain the factors affecting the Model split.
(10 Marks)
b. With a help of flow diagram, explain the modal split carried out between trip generation and trip distribution.
(10 Marks)
7 a. Briefly explain the important considerations in selecting a land use transport models.
b. With a flow chart, explain the structure of Lowry model.

8 Write short notes on the rollowing :
a. Moore's algorithm.
(05 Marks)
b. Diversion curve.
(05 Marks)
c. Recent developments in model split analysis.
d. Difficulties in transport planning for small and medium cities.

USN

10CV847

Eighth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Environmental Impact Assessment

Time: 3 hrs.
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

1 a. Define Environmental Impact Assessment (EIA) and Environmental Impact Statement (EIS). With the help of heat flow chart, explain the relationship between EIA, EIS and FONSI.
(14 Marks)
b. Write a short note on need for EIA studies.
(06 Marks)
2 a. With the help fow chart, explain the step by - step procedure for conducting EIA. b. Explain the limitations of EIA.

3 Explain any four EIA methodologies in detail.
(20 Marks)
4 a. Explain various steps involyed in prediction and assessment of Impacts on Air Environment. \quad (10 Marks)
b. Explain various steps involved in prediction and assessment of Impacts on Water Environment.
(10 Marks)

5 a. Explain EIA guidélines for developmental projects.
(10 Marks)
b. Write a short hote on Rapid and Comprehensive EIA
(10 Marks)
6 a. Write a stiort note on Publie paticipation along with merits and demerits.
(10 Marks)
b. Explain various practical considerations in public participation of EIA process.
(10 Marks)
7 Explain salient features of project activityerivironmental parameter activity relationships.
b. Explain various environmental impacts due to thermal power project.
(10 Marks)
(10 Marks)
8 a. Explain the EIA for water resource.project.
(10 Marks)
b. Explain varous impacts due to nuclear power plant project.
(10 Marks)

