GENERAL APTITUDE

Q. 1 The total expenditure of a family, on different activities in a month, is shown in the piechart. the extra money spent on education as compared to transport (in percent) is \qquad

(a) 33.3
(b) 50
(c) 100
(d) 5

Ans. (b)
Let total monhly earining $=$ Rs. 100
Monthly spent on education $=\frac{15}{100} \times 100=$ Rs. 15
Monthly spent on transport $=\frac{10}{100} \times 10=$ Rs. 10
\% money extra spent on education as compard to transportation

$$
=\frac{15-10}{10} \times 100=50 \%
$$

Q. 2 The unit's place in 26591749110016 is \qquad .
(a) 6
(b) 1
(c) 3
(d) 9

Ans. (b)

$$
\begin{aligned}
& \simeq 26591749(110016) \\
& \simeq \text { Unit place of } 9^{\text {even }}=1
\end{aligned}
$$

\therefore Cyclicity of 9 is $(9,1)(9,1),(9,1)$
So answer will be 1.
Q. 3 The sum of two positive numebrs is 100. After subtracting 5 from each number, the product of the resulting numbers is 0 . One of the original numbers is \qquad .
(a) 95
(b) 90
(c) 85
(d) 80

Ans. (a)
If the product of two positive numbers should be zero, one of the number must be zero. After subtracting 5 if a positive number should become zero, that number should be 5 . If one number is 5 and the sum is 100 then the other number must be 95 .
Let the two positive numbers be x and y.
$\therefore \quad x+y=100$
$(x-5)(y-5)=0$
$\Rightarrow x=5$ or $y=5$
If $x=5$ then $y=95$
If $y=5$ then $x=95$
\therefore One of the number is 95 since 5 is not in any of the options.
Q. 4 Five friends P, Q, R, S and T went camping. At night, they had to sleep in a row inside the tent. P, Q and T refused to sleep next to R since he snored loudly. P and S wanted to avoid Q as he usually hugged people in sleep.
Assuming everyone was satisfied with the sleeping arrangements, what is the order in which they slept?
(a) RSPTQ
(b) QRSPT
(c) QTSPR
(d) SPRTQ

Ans. (a)
Option (a) satisfies the given conditions in the paragraph.
End of Solution
Q. 5 The american psychologist Howard Gardner expounds that human intelligence can be sub-categorised into multiple kinds, in such a vway that individuals differ with respect to their relative competence in each kind. Based on this theory, modern educationists insist on prescribing multi-dimensional curriculum and evluation parameters that enable development and assessment of multiple intelligences.
Which of the following statements can be inferred from the given text?
(a) Modern educationists want to develop and asses the theory of multiple intelligences.
(b) Modern educationists insist that the teaching curriculum and evaluation needs to be multi-dimensional.
(c) Howard Gardner wants to develop and assess the theory of multiple intelligences.
(d) Howard Gardner insits that the teaching curriculum and evaluation needs to be multidimensional.

Ans. (b)
Q. 6 Insert seven numbers between 2 and 34, such that the resulting sequence including 2 abnd 34 is an arithmetic progression. The sum of these inserted seven numbers is
\qquad .
(a) 124
(b) 120
(c) 126
(d) 130

Ans. (c)
2, $a,(a+d),(a+2 d), \ldots \ldots(a+6 d), 34$
\therefore Total number of terms of $A P(n)=9$
Let sum of seven inserted numbers $=S$
$\therefore \quad S=\frac{7}{2}[a+(a+6 d)]=7[a+3 d]$
$T_{n}=34$
Also,
$a-2=(a+d-a)$
\Rightarrow
$a-d=2$
Similarly
$a-2=34-(a+6 d)$
\Rightarrow
$a-2=34-a-6 d$
$\Rightarrow \quad 2 a=36-6 d=36-6(a-2)$
$\Rightarrow \quad 2 a=36-6 a+12$
$\Rightarrow \quad 8 a=48$
$\Rightarrow \quad a=6$
$\therefore \quad d=a-2=6-2=4$
$\therefore \quad S=7(a+3 d)=7(6+3 \times 4)=126$
Q. 7 It is a common criticism that most of the academicians live in their \qquad , so, they are not aware of the real life challenges.
(a) glas palaces
(b) big flats
(c) ivory towers
(d) homes

Ans. (c)
Q. 8 Select the work that fits the analogy:

Fuse : Fusion :: Use : \qquad
(a) Usage
(b) Uses
(c) Usion
(d) User

Ans. (a)
Q. 9 His number for reading is insatiable. He reads indiscriminately. He is most certainly a/an
\qquad reader.
(a) all-round
(b) voracious
(c) precocious
(d) wise

Ans. (b)
Q. 10 If $0,1,2, \ldots, 7,8,9$ are coded as O, P, Q, \ldots, V, W, X, then 45 will be coded as \qquad -.
(a) ST
(b) SS
(c) SU
(d) TS

Ans. (a)

$\therefore 45$ is coded as ' ST '.

CIVIL ENGINEERING

Q. 1 The data for an agricultural field for a specific month are given below:

Pan Evaporation $=100 \mathrm{~mm}$
Effective Rainfall $=20 \mathrm{~mm}$ (after deducting losses due to runoff and deep percolation)
Crop Coefficient $=0.4$
Irrigation Efficiency $=0.5$
The amount of irrigation water (in mm) to be applied to the field in that month, is
(a) 80
(b) 40
(c) 20
(d) 0

Ans. (b)
Water required by crop $=100 \times 0.4 \mathrm{~mm}=40 \mathrm{~mm}$
Effective rainfall $=20 \mathrm{~mm}$
Additional water requried $=20 \mathrm{~mm}$
Amount of water required after accounting irrigation efficiency $=\frac{20}{0.5}=40 \mathrm{~mm}$
Q. 2 Uniform flow with velocity U makes an angle θ with the y-axis, as shown in the figure

The velocity potential (ϕ), is
(a) $\pm \mathrm{U}(x \sin \theta-y \cos \theta)$
(b) $\pm \mathrm{U}(y \sin \theta+x \cos \theta)$
(c) $\pm \mathrm{U}(y \sin \theta-x \cos \theta)$
(d) $\pm \mathrm{U}(x \sin \theta+y \cos \theta)$

Ans. (d)
Velocity in x-depth,
Velocity in y-depth,

$$
\begin{aligned}
& u_{x}=u \sin \theta \\
& u_{y}=u \cos \theta
\end{aligned}
$$

$$
-\frac{\partial \phi}{\partial x}=u_{x}
$$

Integrating it

$$
\begin{align*}
\phi & =-u_{x} x+f(y)+c \\
& =-(u \sin \theta) x+f(y)+c
\end{align*}
$$

$$
\begin{align*}
-\frac{\partial \phi}{\partial y} & =u_{y} \\
\phi & =-u_{y} y+f(x)+c \\
& =-(u \cos \theta) y+f(x)+c \tag{ii}
\end{align*}
$$

Integrating it

By equation (i) and (ii),

$$
\phi=-u(x \sin \theta+y \cos \theta)
$$

If we take

$$
\frac{\partial \phi}{\partial x}=u_{x} \text { and } \frac{\partial \phi}{\partial y}=u_{y}
$$

Then $\phi=u(x \sin \theta+y \cos \theta)$

So, $\phi= \pm u(x \sin \theta+y \cos \theta)$
Q. 3 An amount of 35.67 mg HCl is added to distilled water and the total solution volume is made to one litre. The atomic weights of H and Cl are 1 and 35.5 , respectively. Neglecting the dissociation of water, the pH of the solution, is
(a) 2.50
(b) 2.01
(c) 3.01
(d) 3.50

Ans. (c)

$$
\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

1 mole of HCL gives 1 mole H^{+}ions
36.5 gm of HCl gives 1 gm of H^{+}ions

$$
\begin{aligned}
35.67 \mathrm{mg} & =\frac{1}{36.5} \times 35.67=0.977 \mathrm{mg} \text { of } \mathrm{H}^{+} \\
& =\frac{0.977 \times 10^{-3}}{1}=9.77 \times 10^{-4} \text { moles of } \mathrm{H}^{+} \\
\mathrm{pH} & =-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}\left[9.77 \times 10^{-4}\right] \\
& =-\log _{10} 9.77+4 \log _{10} 10 \\
& =4-0.989=3.01
\end{aligned}
$$

Q. 4 In a soil investigation work at a site, Standard Penetration Test (SPT) was conducted at every 1.5 m interval up to 30 m depth. At 3 m depth, the observed number of hammer blows for three successive 150 mm penetrations were 8,6 and 9 , respectively. The SPTN -value at 3 m depth, is
(a) 14
(b) 17
(c) 23
(d) 15

Ans. (d)
No. of blows for each 150 mm penetration 8, 6 and 9 .
We will not consider first 150 mm number of blows.
Hence, for last 300 mm , number of blows are 15 .
Hence, observed SPT number $=15$.
Q. 5 In the following partial differential equation, θ is a function of t and z, and D and K are functions of θ

$$
D(\theta) \frac{\partial^{2} \theta}{\partial z^{2}}+\frac{\partial K(\theta)}{\partial z}-\frac{\partial \theta}{\partial t}=0
$$

The above equation is
(a) a second order linear equation
(b) a second order non-linear equation
(c) a second degree non-linear equation
(d) a second degree linear equation

Ans. (b)
$\because 1^{\text {st }}$ term of given D. Equation contains product of dependent variable with it's derivative, so it is non-linear and also we have 2nd order derivative so it's order is two i.e., $2^{\text {nd }}$ order non linear equation.
Q. 6 Consider the planar truss shown in the figure (not drawn to the scale)

Neglecting self-weight of the members, the number of zero-force members in the truss under the action of the load P, is
(a) 6
(b) 9
(c) 7
(d) 8

Ans. (d)

As $\Delta_{\mathrm{AB}}=0$, hence $\mathrm{F}_{\mathrm{AB}}=0$
Total number of zero force member $=8$
Q. 7 A planar elastic structure is subjected to uniformly distributed load, as shown in the figure (not drawn to the scale)

Neglecting self-weight, the maximum bending moment generated in the structure (in kNm, round off to the nearest integer), is \qquad .

Ans. (96)

$$
V_{A}=V_{B}=\frac{w L}{2}=\frac{12 \times 8}{2}=48 \mathrm{kN}
$$

As horizontal thrust is zero so it behaves like a beam (curved beam)

$$
M_{\max }=\frac{w L^{2}}{8}(\text { At crown })=\frac{12 \times 8^{2}}{8}=96 \mathrm{kNm}
$$

Q. 8 A fully submerged infinite sandy slope has an inclination of 30° with the horizontal. The saturated unit weight and effective angle of internal friction of sand are $18 \mathrm{kN} / \mathrm{m}^{3}$ and 38°, respectively. The unit weight of water is $10 \mathrm{kN} / \mathrm{m}^{3}$. Assume that the seepage is parallel to the slope. Against shear failure of the slope, the factor of safety (round off to two decimal places) is \qquad .

Ans. (0.60)

$$
\begin{aligned}
\text { F.O.S. } & =\frac{\gamma^{\prime}}{\gamma_{s a t}} \cdot \frac{\tan \phi}{\tan \beta}=\left(\frac{18-10}{18}\right) \frac{\tan 38^{\circ}}{\tan 30^{\circ}} \\
& =0.601
\end{aligned}
$$

Q. 9 The value of $\lim _{x \rightarrow \infty} \frac{x^{2}-5 x+4}{4 x^{2}+2 x}$ is
(a) 0
(b) 1
(c) $\frac{1}{4}$
(d) $\frac{1}{2}$

Ans. (c)
It is in $\left(\frac{\infty}{\infty}\right)$ from so by L-Hospital Rule

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty}\left(\frac{2 x-5}{8 x+2}\right)=\frac{\infty}{\infty} \\
& =\lim _{x \rightarrow \infty}\left(\frac{2}{8}\right)=\left(\frac{1}{4}\right)
\end{aligned}
$$

Q. 10 A reinforcing steel bar, partially embedded in concrete, is subjected to a tensile force P. The figure that appropriately represents the distribution of the magnitude of bond stress (represented as hatched region), along the embedded length of the bar, is
(a)

(b)

(c)

(d)

Ans. (b)
Q. 11 Velocity of flow is proportional to the first power of hydraulic gradient in Darcy's law. The law is applicable to
(a) transitional flow in porous media
(b) turbulent flow in porous media
(c) laminar as well as turbulent flow in porous media
(d) laminar flow in porous media

Ans. (d)
Darcy's law is valid for laminar flow condition in porous media.
Q. 12 The probability that a 50 year flood may NOT occur at all during 25 years life of a project (round off to two decimal places), is \qquad _.

Ans. (0.60)

$$
\begin{aligned}
& P=\frac{1}{T}=\frac{1}{50}=0.02 \\
& q=1-P=0.98
\end{aligned}
$$

\therefore Probability of non-occurance of an event is given by,

$$
\begin{aligned}
\text { Assurance } & =q^{n} \\
& =(0.98)^{25} \\
& =0.603
\end{aligned}
$$

Q. 13 In a two-dimensional stress analysis, the state of stress at a point P is

$$
[\sigma]=\left[\begin{array}{ll}
\sigma_{x x} & \tau_{x y} \\
\tau_{x y} & \sigma_{y y}
\end{array}\right]
$$

The necessary and sufficient condition for existence of the state of pure shear at the point P, is
(a) $\tau_{x y}=0$
(b) $\left(\sigma_{x x}-\sigma_{y y}\right)^{2}+4 \tau_{x y}^{2}=0$
(c) $\sigma_{x x}+\sigma_{y y}=0$
(d) $\sigma_{x x} \sigma_{y y}-\tau_{x y}^{2}=0$

Ans. (c)

In pure shear condition

$$
\sigma_{x}=0, \sigma_{y}=0, \tau_{x y}=\tau
$$

For this condition
(c) is correct

$$
\sigma_{x x}+\sigma_{y y}=0
$$

Q. 14 The true value of $\ln (2)$ is 0.69 . If the value of $\ln (2)$ is obtained by linear interpolation between $\ln (1)$ and $\ln (6)$, the percentage of absolute error (round off to the nearest integer), is
(a) 35
(b) 69
(c) 84
(d) 48

Ans. (d)
True value $\ln 2=0.69=T$

$$
\begin{array}{ll}
x & y=\ln x \\
x_{0}=1 & 0 \\
x_{1}=6 & 1.79
\end{array}
$$

Divided differentiation

$$
\frac{1.79-0}{6-1}=0.358=f\left[x_{0}, x_{1}\right]
$$

Approx:

$$
\begin{aligned}
\ln 2 & =f\left[x_{0}\right]+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right] \\
& =0+(2-1) 0.358 \\
& =0.358=A \\
\% \text { error } & =\frac{T-A}{T} \times 100=48.11 \%
\end{aligned}
$$

Q. 15 In an urban area, a median is provided to separate the opposing streams of traffic. As per IRC : 86-1983, the desirable minimum width (in m, expressed as integer) of the median, is \qquad .

Ans. (5)
As per IRC : 86-1983
Desirable minimum width of median in urban roads $=5 \mathrm{~m}$
And minimum width $=1.2 \mathrm{~m}$
Q. 16 In a drained tri-axial compression test, a sample of sand fails at deviator stress of 150 kPa under confining pressure of 50 kPa . The angle of internal friction (in degree, round off to the nearest integer) of the sample, is \qquad .

Ans. (37)
Sand $(C=0) ; \sigma_{d}=150 ; \sigma_{3}=50 ; \sigma_{1}=200$

$$
\begin{aligned}
\sigma_{1} & =\sigma_{3} \tan ^{2}\left(45+\frac{\phi}{2}\right)+2 c \tan \left(45+\frac{\phi}{2}\right) \\
200 & =50 \tan ^{2}\left(45+\frac{\phi}{2}\right) \\
\phi & =36.87^{\circ}
\end{aligned}
$$

So, the angle of internal friction to the nearest integer is 37°.
Q. 17 During chlorination process, aqueous (aq) chlorine reacts rapidly with water to from $\mathrm{Cl}^{-}, \mathrm{HOCl}$, and H^{+}as shown below

$$
\mathrm{Cl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCL}+\mathrm{Cl}^{-}+\mathrm{H}^{+}
$$

The most active disinfectant in the chlorination process from amongst the following, is
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) H^{+}
(c) Cl^{-}
(d) HOCl

Ans. (d)
Q. 18 A 4 m wide rectangular channel carries $6 \mathrm{~m}^{3} / \mathrm{s}$ of water. The Manning's ' n ' of the open channel is 0.02 . Considering $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, the critical velocity of flow (in m / s, round off to two decimal places) in the channel, is \qquad .

Ans. (2.45)

$$
\text { Critical depth } \begin{aligned}
\left(Y_{C}\right) & =\left(\frac{q^{2}}{g}\right)^{1 / 3} \\
& =\left(\frac{1.5^{2}}{9.81}\right)^{1 / 3}=0.612 \mathrm{~m}
\end{aligned}
$$

Critical velocity $\left(V_{C}\right)=\sqrt{g Y_{C}}=\sqrt{9.81 \times 0.612}=2.45 \mathrm{~m} / \mathrm{s}$
Q. 19 The Los Angeles test for stone aggregates is used to examine
(a) specific gravity
(b) abrasion resistance
(c) soundness
(d) crushing strength

Ans. (b)
Q. 20 A river has a flow of 1000 million litres per day (MLD), BOD_{5} of $5 \mathrm{mg} /$ litre and Dissolved Oxygen (DO) level of $8 \mathrm{mg} / \mathrm{litre}$ before receiving the wastewater discharge at a location. For the existing environmental conditions, the saturation DO level is $10 \mathrm{mg} / \mathrm{litre}$ in the river. Wastewater discharge of 100 MLD with the BOD_{5} of $200 \mathrm{mg} / \mathrm{litre}$ and DO level of $2 \mathrm{mg} / \mathrm{litre}$ falls at that location. Assuming complete mixing of wastewater and river water, the immediate DO deficit (in $\mathrm{mg} / \mathrm{litre}$, round off to two decimal places), is \qquad
Ans. (2.54)

$$
\begin{aligned}
\mathrm{DO}_{\text {mix }} & =\frac{D O_{S} \cdot Q_{S}+D O_{R} \cdot Q_{R}}{Q_{s}+Q_{R}}=\frac{2 \times 100+8 \times 1000}{100+1000} \\
& =7.45 \mathrm{mg} / \mathrm{l} \\
\mathrm{DO} & =\mathrm{DO}_{\text {sat }}-\mathrm{DO}_{\text {mix }}=10-7.45=2.545 \mathrm{mg} / \mathrm{l}
\end{aligned}
$$

Q. 21 During the process of hydration of cement, due to increase in Dicalcium Silicate $\left(\mathrm{C}_{2} \mathrm{~S}\right)$ content in cement clinker, the heat of hydration
(a) does not change
(b) decreases
(c) initially decreases and then increases
(d) increases

Ans. (b)
Q. 22 Which one of the following statements is NOT correct?
(a) the cohesion of normally consolidated clay is zero when tri-axial test is conducted under consolidated undrained condition.
(b) In case of a point load, Boussinesq's equation predicts higher value of vertical stress at a point directly beneath the load as compared to Westergaard's equation.
(c) The ultimate bearing capacity of a strip foundation supported on the surface of sandy soil increase in direct proportion to the width of footing.
(d) A clay deposit with a liquidity index greater than unity is in a state of plastic consistency.

Ans. (d)
A clay deposit with liquidty index greater then 1, will be in liquid stage of consistency.

$$
\begin{array}{ll}
\because & I_{L}=\frac{W_{n}-W_{p}}{W_{L}-W_{p}}>1 \\
\therefore & W_{n}>W_{L}
\end{array}
$$

Q. 23 The area of an ellipse represented by an equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(a) $\frac{4 \pi a b}{3}$
(b) $\pi a b$
(c) $\frac{\pi a b}{2}$
(d) $\frac{\pi a b}{4}$

Ans. (b)

$$
\text { Area }=\iint(1) d y d x=\int_{x=-a}^{a} \int_{y=-\frac{b}{a} \sqrt{-x^{2}+a^{2}}}^{+\frac{b}{a} \sqrt{-x^{2}+a^{2}}}(1) d y d x
$$

$$
=4 \int_{x=0}^{a} \int_{y=0}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}}(1) d y d x
$$

$$
=4 \int_{x=0}^{a} \int_{y=0}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}} d x
$$

$$
=\pi a b
$$

Q. 24 A road in a hilly terrain is to be laid at a gradient of 4.5\%. A horizontal curve of radius 100 m is laid at a location on this road. Gradient needs to be eased due to combination of curved horizontal and vertical profiles of the road. As per IRC, the compensated gradient (in \%, round off to one decimal place), is \qquad -.

Ans. (4)
Gradient $=4.5 \%, R=100 \mathrm{~m}$
Grade compensation $\left.=\left(\frac{30+R}{R}\right) \ngtr\left(\frac{75}{R}\right) \%=\frac{30+100}{100} \ngtr \frac{75}{100}=1.3 \% \ngtr 0.75\right\}$ G.C $=0.75$
Compansated Gradient $=$ Gradient $G . C=4.5 \%-0.75=3.75 \nless 4 \%$
Hence C.G $=4 \%$
Q. 25 A body floating in a liquid is in a stable state of equilibrium if its
(a) metacentre lies below its centre of gravity
(b) metacentre lies above its centre of gravity
(c) metacentre coincides with its centre of gravity
(d) centre of gravity is below its centre of buoyancy

Ans. (b)
For stability of floating body M lies above G

$$
\mathrm{GM}>0
$$

Q. 26 A rigid, uniform, weightless, horizontal bar is connected to three vertical members P, Q and R as shown in the figure (not drawn to the scale). All three members have identical axial stiffness of $10 \mathrm{kN} / \mathrm{mm}$. The lower ends of bars P and R rest on a rigid horizontal surface. When NO load is applied, a gap of 2 mm exists between the lower end of the bar Q and the rigid horizontal surface. When a vertical load W is placed on the horizontal bar in the downward direction, the bar still remains horizontal and gets displaced by 5 mm in the vertically downward direction.

Rigid Uniform Weightless Horizontal Bar

Rigid Horizontal Surface
The magnitude of the load W (in kN , round off to the nearest integer), is \qquad -.

Ans. (130)
Rigid Uniform Weightless Horizontal Bar

Rigid Horizontal Surface

$$
\begin{align*}
P_{1}+P_{1}+P_{2} & =W \tag{i}\\
P_{1} & =P_{3}
\end{align*}
$$

$$
\delta_{1}=5 \mathrm{~mm}=\frac{P_{1} L}{A E} \quad \frac{A E}{L}=10 \mathrm{kN} / \mathrm{mm}
$$

So,

$$
\begin{aligned}
& P_{1}=10 \times 5=50 \mathrm{kN} \\
& P_{2}=10 \times 3=30 \mathrm{kN} \\
& W=2(50)+30=130 \mathrm{kN}
\end{aligned}
$$

$$
\delta_{2}=3 \mathrm{~mm}=\frac{P_{2} L}{A E}
$$

Q. 27 A rigid weightless platform PQRS shown in the figure (not drawn to the scale) can slide freely in the vertical direction. The platform is held in position by the weightless member OJ and four weightless, frictionless rollers. Point O and J are pin connections. A block of 90 kN rests on the platform as shown in the figure.

The magnitude of horizontal component of the reaction (in kN) at pin O , is
(a) 180
(b) 150
(c) 90
(d) 120

Ans. (d)

$$
\begin{aligned}
\Sigma y & =0 \\
\Rightarrow \quad R_{o} \sin 36.87-90 & =0 \\
R_{o} & =\frac{90}{\sin 3687^{\circ}}=150 \mathrm{kN}
\end{aligned}
$$

Horizontal reaction at $\mathrm{O}=\mathrm{H}_{0}$

$$
\begin{aligned}
& =R_{o} \cos 36.87=150 \times \cos 36.87 \\
& =120 \mathrm{kN}
\end{aligned}
$$

Q. 28 The total stress paths corresponding to different loading conditions, for a soil specimen under the isotropically consolidated stress state (O), are shown below:

Stress Path	Loading Condition
OP	I. Compression loading ($\sigma_{1}-$ increasing; $\sigma_{3}-$ constant)
OQ	II. Compression unloading ($\sigma_{1}-$ constant; $\sigma_{3}-$ decreasing)
OR	III. Extension unloading ($\sigma_{1}-$ decreasing; $\sigma_{3}-$ constant)
OS	IV. Extension loading ($\sigma_{1}-$ constant; $\sigma_{3}-$ increasing)

The correct match between the stress paths and the listed loading conditions, is
(a) OP-I, OQ-II, OR-IV, OS-III
(b) OP-III, OQ-II, OR-I, OS-IV
(c) OP-IV, OQ-III, OR-I, OS-II
(d) OP-I, OQ-III, OR-II, OS-IV

Ans. (c)
I. Compression loading

OR

II. Compression unloading

III. Exctension unloading

OQ

IV. Extension loading

OP

End of Solution
Q. 29 In a homogeneous unconfined aquifer of area $3.00 \mathrm{~km}^{2}$, the water table was at an elevation of 102.00 m . After a natural recharge of volume 0.90 million cubic meter $\left(\mathrm{Mm}^{3}\right)$, the water table rose to 103.20 m . After this recharge, ground water pumping took place and the water table dropped down to 101.020 m . The volume of ground water pumped after the natural recharge, expressed (in Mm^{3} and round off to two decimal places), is \qquad
Ans. (1.5)
\qquad

101.20 m
$V_{R}=0.9 \mathrm{Mm}^{3}$
$V=3 \times(103.2-102)$
$=3 \times 1.2=3.6 \mathrm{Mm}^{3}$
y_{s} or $y_{R}=\frac{V R}{V}=\frac{0.9}{3.6}$
Now,

$$
\begin{aligned}
& y_{S}=\frac{V_{D}}{V} \\
& V_{D}=\frac{0.9}{3.6}[3 \times(103.2-101.2)] \\
& V_{D}=1.5 \mathrm{Mm}^{3}
\end{aligned}
$$

Q. 30 Water flows at the rate of $12 \mathrm{~m}^{3} / \mathrm{s}$ in a 6 m wide rectangular channel. A hydraulic jump is formed in the channel at a point where the upstream depth is 30 cm (just before the jump). Considering acceleration due to gravity as $9.81 \mathrm{~m} / \mathrm{s}^{2}$ and density of water as 1000 $\mathrm{kg} / \mathrm{m}^{3}$, the energy loss in the jump is
(a) 114.2 kW
(b) $141.2 \mathrm{~J} / \mathrm{s}$
(c) $141.2 \mathrm{~h} . \mathrm{p}$.
(d) 114.2 MW

Ans. (b)
Assuming channle bed to be horizontal and frictionless.

$$
q=\frac{12}{6}=2 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}
$$

$$
\text { Initial Froude No. } \begin{aligned}
\left(F_{r}\right) & =\left(\frac{q^{2}}{g Y_{1}^{3}}\right)^{1 / 2} \\
& =\left(\frac{2^{2}}{9.81 \times 0.3^{3}}\right)^{1 / 2}=3.88
\end{aligned}
$$

From Belenger's Momentum equation for a rectangular channel

$$
\begin{aligned}
\frac{Y_{2}}{Y_{1}} & =\frac{1}{2}\left(-1+\sqrt{1+8 F_{1}^{2}}\right) \\
& =\frac{1}{2}\left(-1+\sqrt{1+8 \times 3.88^{2}}\right) \\
& =5.018 \\
\therefore \quad Y_{2} & =5.018 \times 0.3=1.505 \mathrm{~m} \\
\text { Head loss in the jump }\left(h_{L}\right) & =\frac{\left(Y_{2}-Y_{1}\right)^{3}}{4 Y_{1} Y_{2}} \\
& =\frac{(1.505-0.3)^{3}}{4 \times 1.505 \times 0.3} \\
& =0.968 \mathrm{~m} \\
\text { Power lost in the jump } & =\gamma_{w} Q h_{L} \\
& =(9.81 \times 12 \times 0.968) \mathrm{kW} \\
& =114.04 \mathrm{~kW}
\end{aligned}
$$

Q. 31 The appropriate design length of a clearway is calculated on the basis of 'Normal Takeoff' condition. Which one of the following options correctly depicts the length of the clearway? (Note: None of the option are drawn to scale)

Ans. (d)
For normal take off condition:

$$
\begin{aligned}
\text { Clearway } & \ngtr \frac{1}{2}(1.5 \text { take off distance }-1.15 \text { of lift off distance }) \\
& \ngtr \frac{1}{2}(1.15 \times 1625-1.15 \times 875) \\
& \ngtr 431.25 \mathrm{~m}
\end{aligned}
$$

So clearway is less then for 432 m .
Q. 32 The singly reinforced concrete beam section shown in the figure (not drawn to the scale) is made of M 25 grade concrete and Fe500 grade reinforcing steel. The total crosssectional area of the tension steel is $942 \mathrm{~mm}^{2}$.

As per Limit State Design of IS 456 : 2000, the design moment capacity (in kNm round off to two decimal places) of the beam section, is \qquad -

Ans. (158.25)

M25 concrete
Fe500 steel

$$
\begin{aligned}
B & =300 \mathrm{~mm} \\
d & =450 \mathrm{~mm} \\
A_{s t} & =942 \mathrm{~mm}^{2} \\
M_{u} & =?
\end{aligned}
$$

(i)

$$
x_{u l i m}=0.46 \times d=0.46 \times 450=207 \mathrm{~mm}
$$

(ii)

$$
x_{u}=\frac{0.87 \cdot f_{y} \cdot A_{s t}}{0.36 \cdot f_{c k} \cdot B}=\frac{0.87 \times 500 \times 942}{0.36 \times 25 \times 300}=151.77 \mathrm{~mm}
$$

(iii)

$$
x_{u}<x_{u l i m} \quad \text { It is an under reinforcement section. }
$$

(iv)

$$
\begin{aligned}
M_{u} & =0.36 \cdot f_{c k} \cdot B \cdot x_{u} \cdot\left(d-0.42 x_{u}\right) \\
& =0.36 \times 25 \times 300 \times 151.77 \times(450-0.42 \times 151.77) / 10^{6} \\
& =158.28 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Q. 33 For the Ordinary Differential Equation $\frac{d^{2} x}{d t^{2}}-54 \frac{d x}{d t}+6 x=0$, with initial condition $x(0)=0$ and $\frac{d x}{d t}(0)=10$, the solution is
(a) $-10 e^{2 t}+10 e^{3 t}$
(b) $5 e^{2 t}+6 e^{3 t}$
(c) $10 e^{2 t}+10 e^{3 t}$
(d) $-5 e^{2 t}+6 e^{3 t}$

Ans. (a)
A.E. is $m^{2}-5 m+6=0 \Rightarrow m=2,3$ so $C_{f}=C_{1} e^{2 t}+C_{2} e^{3 t}$.
$\mathrm{PI}=0$ and G. Solution is $x=C F+P I=C_{1} e^{2 t}+C_{2} e^{3 t}$ and $\frac{d x}{d t}=2 C_{1} e^{2 t}+3 C_{2} e^{3 t}$.
Now, using initial conditions we get $C_{1}=-10, C_{2}=10$.

$$
x=-10 e^{2 t}+10 e^{3 t}
$$

Q. 34 The length and bearings of a traverse PQRS are:

Segment	Length (m)	Bearing
$P Q$	40	80°
QR	50	10°
$R S$	30	210°

The length of line segment SP (in m , round off to two decimal places), is \qquad -.

Ans. (44.79)

$$
\begin{aligned}
\Delta L & =40 \cos 80^{\circ}+50 \cos 10^{\circ}+30 \cos 210^{\circ} \\
& =30.20 \\
\Delta D & =40 \sin 80^{\circ}+50 \sin 10^{\circ}+30 \sin 210^{\circ} \\
& =33.07 \\
\text { Length, } S P & =\sqrt{\Delta L^{2}+\Delta D^{2}}=44.79 \mathrm{~m}
\end{aligned}
$$

Q. 35 A continuous function $f(x)$ is defined. If the third derivative at x_{i} is to be computed by using the fourth order central finite-divided-difference scheme (the step length $=h$), the correct formula is
(a) $f^{\prime \prime \prime}\left(x_{i}\right)=\frac{-f\left(x_{i+3}\right)-8 f\left(x_{i+2}\right)+13 f\left(x_{i+1}\right)+13 f\left(x_{i-1}\right)+8 f\left(x_{i-2}\right)-f\left(x_{i-3}\right)}{8 h^{3}}$
(b) $f^{\prime \prime \prime}\left(x_{i}\right)=\frac{-f\left(x_{i+3}\right)+8 f\left(x_{i+2}\right)-13 f\left(x_{i+1}\right)+13 f\left(x_{i-1}\right)-8 f\left(x_{i-2}\right)+f\left(x_{i-3}\right)}{8 h^{3}}$
(c) $f^{\prime \prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+3}\right)-8 f\left(x_{i+2}\right)+13 f\left(x_{i+1}\right)+13 f\left(x_{i-1}\right)-8 f\left(x_{i-2}\right)-f\left(x_{i-3}\right)}{8 h^{3}}$
(d) $f^{\prime \prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+3}\right)-8 f\left(x_{i+2}\right)-13 f\left(x_{i+1}\right)+13 f\left(x_{i-1}\right)+8 f\left(x_{i-2}\right)+f\left(x_{i-3}\right)}{8 h^{3}}$

Ans. (b)

$$
\begin{aligned}
\left.\frac{\partial^{3} u}{\partial x^{3}}\right|_{x_{i}} & =\frac{-u_{i+3}+8 u_{i+2}-13 u_{i+1}+13 u_{i-1}-8 u_{i-2}+u_{i-3}}{8 \Delta h^{3}} \\
f^{\prime \prime}\left(x_{i}\right) & =\frac{-f\left(x_{i+3}\right)+8 f\left(x_{i+2}\right)-13 f\left(x_{i+1}\right)+13 f\left(x_{i-1}\right)-8 f\left(x_{i-2}\right)+f\left(x_{i-3}\right)}{8 h^{3}}
\end{aligned}
$$

Q. 36 Three reservoir P, Q and R are interconnected by pipes as shown in the figure (not drawn to the scale). Piezometric head at the junction S of the pipes is 100 m . Assume acceleration due to gravity as $9.81 \mathrm{~m} / \mathrm{s}^{2}$ and density of water as $1000 \mathrm{~kg} / \mathrm{m}^{3}$. the length of the pipe from junction S to the inlet of reservoir R is 180 m .

Datum

Considering head loss only due to friction (with friction factor of 0.03 for all the pipes), the height of water level in the lowermost reservoir R (in m , round off to one decimal places) with respect to the datum, is \qquad _.

Ans. (97.5)

Datum

Apply conutinuity

$$
\begin{aligned}
Q_{3} & =Q_{1}+Q_{2} \\
& =A_{1} V_{1}+A_{2} V_{2} \\
& =\frac{\pi}{4}(0.3)^{2}(2.56)+\frac{\pi}{4}(0.3)^{2}(1.98) \\
& =0.3209 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Apply energy eq. between (S) and (R)

$$
\begin{aligned}
H_{s} & =H_{r}+h_{f} \\
100 & =z+\frac{8 Q_{3}^{2}}{\pi^{2} g} \times \frac{f L_{3}}{D_{3}^{5}} \\
100 & =z+\frac{8(0.3209)^{2}}{\pi^{2} g} \times \frac{(0.03)(180)}{(0.45)^{5}} \\
z & =97.51 \mathrm{~m}
\end{aligned}
$$

Q. 37 The relationship between traffic flow rate (q) and density (D) is shown in the figure.

The shock wave condition is depicted by
(a) flow with respect to point 4 and point $5\left(q_{4}=q_{5}\right)$
(b) flow changing from point 3 to point $7\left(q_{3}<q_{7}\right)$
(c) flow changing from point 2 to point $6\left(a_{2}>q_{6}\right)$
(d) flow with respect to point $1\left(\mathrm{q}_{1}=\mathrm{q}_{\max }\right)$

Ans. (c)

Q. 38 A stream with a flow rate of $5 \mathrm{~m}^{3} / \mathrm{s}$ is having an ultimate BOD of $30 \mathrm{mg} / \mathrm{litre}$. A wastewater discharge of $0.20 \mathrm{~m}^{3} / \mathrm{s}$ having BOD_{5} of $500 \mathrm{mg} /$ litre joins the stream at a location and instantaneously gets mixed up completely. The cross-sectional area of the stream is $40 \mathrm{~m}^{2}$ which remains constant. BOD exertion rate constant is 0.3 per day (logarithm base to e). The BOD (in $\mathrm{mg} / \mathrm{litre}$ round off to two decimal places) remaining at 3 km downstream from the mixing location, is \qquad .

Ans. (49.57)

$$
\begin{aligned}
t & =\frac{d}{v} \quad \text { where, } v=\frac{Q_{S}+Q_{R}}{A}=\frac{0.2+5}{40}=0.13 \mathrm{~m} / \mathrm{sec} \\
t & =\frac{3 \times 10^{3}}{0.13 \times 86400}=0.26 \text { days } \\
\mathrm{BOD}_{5} & =\mathrm{BOD}_{u}\left(1-e^{-k \times 5}\right) \\
\mathrm{BOD}_{u} & =\frac{500}{\left(1-e^{-0.3 \times 5}\right)}=643.66 \mathrm{mg} / \mathrm{l} \\
\mathrm{DO}_{\text {mix }} & =\frac{Q_{R} \mathrm{BOD}_{u}+Q_{S} \cdot \mathrm{BOD}_{u}}{Q_{S}+Q_{R}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5 \times 30+0.2 \times 643.66}{5+0.2}=53.6 \mathrm{mg} / l \\
L_{t} & =L_{0} e^{-k \times t} \\
& =53.6 e^{-0.3 \times 0.26} \\
& =49.57 \mathrm{mg} / l
\end{aligned}
$$

Q. 39 Consider the system of equations

$$
\left[\begin{array}{ccc}
1 & 3 & 2 \\
2 & 2 & -3 \\
4 & 4 & -6 \\
2 & 5 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]
$$

The value of x_{3} (round off to the nearest integer), is \qquad .

Ans. (3)

$$
\begin{aligned}
{[A: B] } & =\left[\begin{array}{ccccc}
1 & 3 & 2 & \vdots & 1 \\
2 & 2 & -3 & \vdots & 1 \\
4 & 4 & -6 & \vdots & 2 \\
3 & 5 & 2 & \vdots & 1
\end{array}\right] \xrightarrow[\text { an Echelon Form }]{\text { Converting into }}\left[\begin{array}{ccccc}
1 & 3 & 2 & \vdots & 1 \\
0 & -1 & -2 & \vdots & -1 \\
0 & 0 & 1 & \vdots & 3 \\
0 & 0 & 0 & \vdots & 0
\end{array}\right] \\
\Rightarrow\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & -1 & -2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{c}
1 \\
-1 \\
3 \\
0
\end{array}\right] \Rightarrow x_{3}=3
\end{aligned}
$$

Q. 40 A 10 m thick clay layer is resting over a 3 m thick sand layer and is submerged. A fill of 2 m thick sand with unit weight of $20 \mathrm{kN} / \mathrm{m}^{3}$ is placed above the clay layer to accelerate the rate of consolidation of the clay layer. Coefficient of consolidation of clay is $9 \times 10^{-2} \mathrm{~m}^{2} /$ year and coefficient of volume compressibility of clay is $2.2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{kN}$. Assume Taylor's relation between time factor and average degree of consolidation.

The settlement (in mm, round off to two decimal places) of the clay layer, 10 years after the construction of the fill, is \qquad .

Ans. (18.83)

$$
\begin{aligned}
\Delta \bar{\sigma} & =2 \times 20=40 \mathrm{kN} / \mathrm{m}^{2} \\
\Delta H & =m_{V} \Delta \bar{\sigma} H \\
& =2.2 \times 10^{-4} \times 40 \times 10 \times 10^{3} \mathrm{~mm} \\
& =88 \mathrm{~mm} \\
T_{v} & =\frac{C \times t}{H^{2}}=\frac{9 \times 10^{-2} \times 10}{5^{2}}=0.036 \\
T_{v} & =\frac{\pi}{4} U^{2} \\
U & =\sqrt{\frac{0.036 \times 4}{\pi}}=0.214
\end{aligned}
$$

Δh after 10 years $=0.214 \times 88=18.832 \mathrm{~mm}$
Q. 41 If C represents a line segment between $(0,0,0)$ and $(1,1,1)$ in Cartesian coordinate system, the value (expressed as integer) of the line integral

$$
\int_{C}[(y+z) d x+(x+z) d y+(x+y) d z]
$$

is \qquad .

Ans. (3)

$$
\begin{aligned}
I & =\int_{C}[(y d x+x d y)+(z d x+x d z)+(z d y+y d z)] \\
& =\int_{C}[d(x y)+d(x z)+d(y z)]=(x y+y z+z x)_{(0,0,0)}^{(11,1)} \\
& =(1+1+1)-(0+0+0)=3
\end{aligned}
$$

Q. 42 Surface Overflow Rate (SOR) of a primary settling tank (discrete settling) is 20000 litre $/ \mathrm{m}^{2}$ per day. Kinematic viscosity of water in the tank is $1.01 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{s}$. Specific gravity of the settling particles is 2.64 . Acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. The minimum diameter (in $\mu \mathrm{m}$, round off to one decimal place) of the particles that will be removed with 80% efficiency in the tank, is \qquad _.

Ans. (14.46)

$$
\begin{aligned}
& \eta=80=\frac{u_{s}}{v_{s}} \times 100 \\
& u_{s}=\frac{0.8 \times 20000 \times 10^{-3}}{86400}=1.85 \times 10^{-4} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
u_{s}=\frac{(G-1) g d^{2}}{18 v}
$$

$$
\begin{aligned}
1.85 \times 10^{-4} & =\frac{(2.64-1) \times 9.81 \times d^{2}}{18 \times 1.01 \times 10^{-2} \times 10^{-4}} \\
d & =1.446 \times 10^{-5} \mathrm{~m} \\
& =14.46 \mu \mathrm{~m}
\end{aligned}
$$

Q. 43 A gaseous chemical has a concentration of $41.6 \mu \mathrm{~mol} / \mathrm{m}^{3}$ in air at 1 atm pressure and temperature 293 K . The universal gas constant R is $82.05 \times 10^{-6}\left(\mathrm{~m}^{3} \mathrm{~atm}\right) /(\mathrm{mol} \mathrm{K})$. Assuming that ideal gas law is valid, the concentration of the gaseous chemical (in ppm, round off to one decimal place), is \qquad .

Ans. (1)

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P} \\
& =\frac{41.6 \times 10^{-6} \times 32.05 \times 10^{-6}}{1} \times 293=10^{-6} \mathrm{~m}^{3}
\end{aligned}
$$

41.6μ mole of gas volume of $10^{-6} \mathrm{~m}^{3}$

So,

$$
\begin{aligned}
& 1 \mathrm{ppm}=\frac{1 \text { part of gas }}{10^{6} \text { parts of air }}=\frac{1 \mathrm{~m}^{3} \text { of gas }}{10^{6} \mathrm{~m}^{3} \text { of air }} \\
& 1 \mathrm{ppm}=\frac{41.6 \times 10^{6} \mu \text { moles }}{10^{6} \mathrm{~m}^{3}}
\end{aligned}
$$

So,

$$
41.6 \mu \mathrm{moles} / \mathrm{m}^{3}=1 \mathrm{ppm}
$$

Q. 44 The soil profile at a site up to a depth of 10 m is shown in the figure (not drawn to the scale). The soil is preloaded with a uniform surcharge (q) of $70 \mathrm{kN} / \mathrm{m}^{2}$ at the ground level. The water table is at a depth of 3 m below ground level. The soil unit weight of the respective layers is shown in the figure. Consider unit weight of water as $9.81 \mathrm{kN} / \mathrm{m}^{3}$ and assume that the surcharge (q) is applied instantaneously.

Immediately after preloading, the effective stresses (in kPa) at points P and Q respectively, are
(a) 36 and 126
(b) 36 and 90
(c) 54 and 95
(d) 124 and 204

Ans. (c)

Surcharge ($q=70 \mathrm{kN} / \mathrm{m}^{2}$) is applied instantaneously hence excess pore pressure $\left(u_{i}=70 \mathrm{kPa}\right)$ is developed at point P and Q [GWT level is at level P]
At point P : Total stress

$$
\sigma=q+3 \gamma=70+3 \times 18
$$

Pore water pressure $=$ Hydrostatics pore pressure

$$
\begin{aligned}
& + \text { Excess pore pressure } \\
= & 0+u_{i}=0+70=70 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Effective stress,
At point Q: Total stress, Pore pressure,

Effective stress,

$$
\begin{aligned}
\bar{\sigma}= & \sigma-u=54 \mathrm{kPa} \\
\sigma= & q+3 \gamma+4 \gamma_{\text {sat }}=70+3 \times 18+4 \times 20 \\
u= & \text { Hydrostatics pore pressure } \\
& + \text { Excess pore pressure } \\
= & 4 \gamma_{w}+u_{i}=4 \times 9.81+70
\end{aligned}
$$

$$
\bar{\sigma}=\sigma-u=94.76
$$

Q. 45 An open traverse PQRST is surveyed using theodolite and the consecutive coordinates obtained are given in the table

Line	Consecutive Coordinates			
	Northing (m)	Southing (m)	Easting (m)	Westing (m)
PQ	110.2	-	45.5	-
QR	80.6	-	-	60.1
RS	-	90.7	-	70.8
ST	-	105.4	55.5	-

If the independent coordinates (Northing, Easting) of station P are ($400 \mathrm{~m}, 200 \mathrm{~m}$) the independent coordinates (in m) of station T , are
(a) $405.3,229.9$
(b) $394.7,170.1$
(c) $194.7,370.1$
(d) $205.3,429.9$

Ans. (b)

$$
\begin{aligned}
& \Delta L=-5.3 \\
& \Delta D=-29.9 \\
& T, \text { Northing }\{400+(-5.3)=394.7 \\
& T, \text { Easting }\{200+(-29.9)=170.1 \\
& T {[394.7 \mathrm{~m}, 170.1 \mathrm{~m}] }
\end{aligned}
$$

Q. 46 Distributed load(s) of $50 \mathrm{kN} / \mathrm{m}$ may occupy any position(s) (either continuously or in patches) on the girder PQRST as shown in the figure (not drawn to the scale)

The maximum negative (hogging) bending moment (in kNm) that occurs at point R is
(a) 56.25
(b) 22.50
(c) 150.00
(d) 93.75

Ans. (a)

ILD for BM at R:

To get maximum hogging BM at R, keep UDL over PQ and ST.

$$
\begin{aligned}
\text { Max. -ve BM at R } & =50\left[-\frac{1}{2} \times 1.5 \times 0.6\right]+50\left[-\frac{1}{2} \times 1.5 \times 0.9\right] \\
& =56.25 \mathrm{kNm}
\end{aligned}
$$

Q. 47 A water supply scheme transports 10 MLD (Million Litres per Day) water through a 450 mm diameter pipeline for a distance of 2.5 km . A chlorine dose of $3.50 \mathrm{mg} / \mathrm{litre}$ is applied at the starting point of the pipeline to attain a certain level of disinfection at the downward end. It is decided to increase the flow rate from 10 MLD to 13 MLD in the pipeline. Assume exponent for concentration, $\mathrm{n}=0.86$. With this increased flow, in order to attain the same level of disinfection, the chlorine does (in $\mathrm{mg} / \mathrm{litre}$) to be applied at the starting point should be
(a) 5.55
(b) 4.75
(c) 3.95
(d) 4.40

Ans. (b)

$$
\text { Waterson law, tc } \begin{aligned}
c^{n} & =\text { Constant } \\
t_{1} c_{1}^{n} & =t_{2} c_{2}^{n} \\
\frac{d_{1}}{v_{1}} c_{1}^{n} & =\frac{d_{2}}{v_{2}} c_{2}^{n} \\
\frac{d_{1}}{Q_{1}} A_{1} c_{1}^{n} & =\frac{d_{2} A_{2} c_{2}^{n}}{Q_{2}} \\
d_{1} & =d_{2}, A_{1}=A_{2} \\
\frac{(3.5)^{0.86}}{10} & =\frac{\left(c_{2}\right)^{0.86}}{13}
\end{aligned}
$$

$$
\begin{aligned}
c_{2} & =\left(\frac{13}{10}\right)^{1 / 0.86} \times 3.5=4.747 \\
& =4.75 \mathrm{mg} / \mathrm{l}
\end{aligned}
$$

Q. 48 The flange and web plates of the doubly symmetric built-up section are connected by continuous 10 mm thick fillet welds as shown in the figure (not drawn to the scale). The moment of inertia of the section about its principal axis $X-X$ is $7.73 \times 10^{6} \mathrm{~mm}^{4}$. The permissible shear stress in the fillet welds is $100 \mathrm{~N} / \mathrm{mm}^{2}$. The design shear strength of the section is governed by the capacity of the fillet welds.

The maximum shear force (in kN , round off to one decimal place) that can be carried by the section, is \qquad .

Ans. (393.5)

$q=$ Shear stress at the level mn in the weld $=100 \mathrm{MPa}=\frac{F A \bar{y}}{I b}$
$F=$ Shear force at the given section
$A=$ Area of the cross-section above the level $\mathrm{mn}=100 \times 10 \mathrm{~mm}^{2}$
$\bar{y}=$ C.G. of shaded area above the level $m n=60-5=55 \mathrm{~m}$

$$
\begin{aligned}
& I=7.73 \times 10^{6} \mathrm{~mm}^{4} \\
& b=\text { Width of weld at } \mathrm{mn}(4 \text { welds })=4 \times t=4 \times 7=28 \mathrm{~mm}
\end{aligned}
$$

$t=$ Throat thickness

$$
\begin{aligned}
& =0.7 \times \mathrm{s}=0.7 \times 10 \times 4=28 \mathrm{~mm} \\
\therefore \quad 100 & =\frac{F \times(100 \times 10) \times 55}{7.73 \times 10^{6} \times 28} \\
\mathrm{~F} & =\frac{100 \times 7.73 \times 10^{6} \times 28}{1000 \times 55}=393.527 \mathrm{kN} \\
& =393.5 \mathrm{kN}
\end{aligned}
$$

Q. 49 A dowel bar is placed at a contraction joint. When contraction occurs, the concrete slab cracks at predetermined location(s). Identify the arrangement, which shows the correct placement of dowel bar and the place of occurrence of the contraction crack(s).

(d)

Ans. (b)
Q. 50 A vertical retaining wall of 5 m height has to support soil having unit weight of $18 \mathrm{kN} / \mathrm{m}^{3}$, effective cohesion of $12 \mathrm{kN} / \mathrm{m}^{2}$, and effective friction angle of 30°. As per Rankine's earth pressure theory and assuming that a tension crack has occurred, the lateral active thrust on the wall per meter length (in kN / m, round off to two decimal places), is \qquad _.

Ans. (21.71)

After tension crack

$$
\begin{aligned}
P_{a} & =\frac{1}{2} \times 16.144(5-2.309) \\
& =21.714 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Q. 51 A simply supported prismatic concrete beam of rectangular cross-section, having a span of 8 m , is prestressed with an effective prestressing force of 600 kN . The eccentricity of the prestressing tendon is zero at supports and varies linearly to a value of e at the mid-span. In order to balance an external concentrated load of 12 kN applied at the mid-span, the required value of e (in mm, round off to the nearest integer) of the tendon, is \qquad .

Ans. (40)

$$
P=600 \mathrm{kN}
$$

Simply supported span $=L=8 \mathrm{~m}$
To support a point load applied at mid span (W)

$$
\begin{aligned}
& =12 \mathrm{kN} \\
\text { Balancing load } & =\text { Point load } \\
2 P \sin \theta & =W \\
2 P\left(\frac{e}{L / 2}\right) & =2 \\
\frac{2 P e \times 2}{L} & =W \\
\frac{4 P e}{L} & =W \\
e & =\frac{W L}{4 P}=\frac{12000 \mathrm{~N} \times 8000 \mathrm{~mm}}{4 \times 600 \times 1000 \mathrm{~N}} \\
& =40 \mathrm{~mm}
\end{aligned}
$$

Q. 52 Traffic volume count has been collected on a 2 lane road section which needs upgradation due to severe traffic flow condition. Maximum service flow rate per lane is observed as 1280 veh/h at level of service 'C'. The Peak Hour Factor is reported as 0.78125 . Historical traffic volume count provides Annual Average Daily Traffic as 122270 veh/day. Directional split of the traffic flow is observed to be $60: 40$. Assuming that traffic stream consists of 'All Cars' and all drivers are 'Regular Commuters', the number of extra lane(s) (round off to the next higher integer) to be provide, is \qquad .

Ans. (6)
Directional design hourly volume (DDHV)

$$
D D H V=A A D T \times K \times D
$$

where, $D=$ Volume proportion in major direction, $K=$ The proportion of AADT occuring in peak hour.

$$
\begin{aligned}
\text { DDHV } & =12270 \times 0.6 \times K \\
& =7362 \\
f_{H V} & =\text { Heavy veh. adjustment factor }=1 \text { for car } \\
f_{P} & =\text { Road user familarity adjustment factor } \\
& =1 \text { for regular commuters }
\end{aligned}
$$

As per HCM,
Number of lanes required,

$$
\begin{aligned}
N & =\frac{D D H V}{P H F \times M S F \times F_{H V} \times f_{p}} \\
& =\frac{7362}{0.78125 \times 1280 \times 1 \times 1}=7.362=8 \text { lanes }
\end{aligned}
$$

Number of extra lanes $=8-2=6$ lanes
Q. 53 A circular water tank of 2 m diameter has a circular orifice of diameter 0.1 m at the bottom. Water enters the tank steadily at a flow rate of 20 litre/s and escapes through the orifice. The coefficient of discharge of the orifice is 0.8 . Consider the acceleration due to gravity as $9.81 \mathrm{~m} / \mathrm{s}^{2}$ and neglect frictional loses. The height of the water level (in m , round off to two decimal places) in the tank at the steady state, is \qquad .

Ans. (0.52)

Assume H is the level of weter in the tank in steady condition.
For steady water level in the tank
Discharge through orifice $=$ Water enters in the tank

$$
\begin{aligned}
c_{d} \cdot a \cdot \sqrt{2 g H} & =20 \times 10^{-3} \\
0.8 \times \frac{\pi}{4}(0.1)^{2} \sqrt{2 g H} & =0.02 \\
H & =0.5164 \mathrm{~m}
\end{aligned}
$$

Q. 54 A cantilever beam PQ of uniform flexural rigidity (EI) is subjected to a concentrated moment M at R as shown in the figure.

The deflection at the free end Q is
(a) $\frac{M L^{2}}{6 E I}$
(b) $\frac{M L^{2}}{4 E I}$
(c) $\frac{3 M L^{2}}{4 E I}$
(d) $\frac{3 M L^{2}}{8 E I}$

Ans. (d)

$$
\delta_{C}=\delta_{1}=C C_{1}+C_{1} C_{2}
$$

$$
=B B_{1}+C_{1} C_{2}
$$

$$
=\frac{M\left(\frac{L}{2}\right)^{2}}{2 E I}+\frac{M\left(\frac{L}{2}\right)}{E I}\left(\frac{L}{2}\right)
$$

$$
\delta_{\mathrm{C}}=\frac{3}{8} \frac{M L^{2}}{E I}
$$

Q. 55 Water flows in the upward direction in a tank through 2.5 m thick sand layer as shown in the figure. The void ratio and specific gravity of sand are 0.58 and 2.7 , respectively. The sand is fully saturated. Unit weight of water is $10 \mathrm{kN} / \mathrm{m}^{3}$.

The effective stress (in kPa, round off to two decimal places) at point A, located 1 m above the base of tank, is \qquad -.

Ans. (8.94)

$$
\begin{aligned}
& 2.5 \mathrm{~m} \\
& \gamma_{\text {suv }}=\left(\frac{G-1}{1+e}\right) \gamma_{\omega}=\left(\frac{2.7-1}{\bar{\sigma}}\right. \\
& \bar{\sigma}=z \gamma_{\text {suv }}-i z \gamma_{\omega} \\
&=1.5\left(\gamma_{\text {suv }}\right)-\left(\frac{1.2}{2.5}\right) \times 1.5 \times \gamma_{\omega} \\
&=8.939 \mathrm{mN} / \mathrm{m}^{2}
\end{aligned}
$$

