KLE Dr. M.S.SHESHGIRI
 COLLEGE OF ENGINEERING \& TECHNOLOGY UDYAMBAG, BELAGAVI - 590008.

LIBRARY AND INFORMATION CENTER

OUESTION PAPERS

$3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }} \& 8^{\text {th }}$ SEMESTER

CIVIL

JUNE ! JULY 2019

Index

SI.No	Semester	Sub Code	Subject	Page No
1	$3^{\text {rd }}$ Sem	17MAT31	Engineering Mathematics-3	3-6
2		17MATDIP31	Additional Mathematics-1	7-8
3		17CV33	Fluid Mechanics	9-10
4		17CV34	Basic Surveying	11-14
5		17CV35	Engineering Geology	15-16
6	$4^{\text {th }}$ Sem	17MAT41	Engineering Mathematics-4	17-20
7		17MATDIP41	Additional Mathematics-2	21-22
8		17CV42	Analysis of Determinate Structures	23-26
9		17CV43	Applied Hydraulic	27-28
10		17CV44	Concrete Technology	29-30
11		17CV45	Basic Geotechnical Engineering	31-32
12		17CV46	Advanced Surveying	33-34
13	$5^{\text {th }} \mathrm{Sem}$	15 CV 51	Design of RC Structural Elements	35-36
14		15CV52	Analysis of Indeterminate Structures	37-40
15		15 CV 53	Applied Geotechnical Engineering	41-42
16		15 CV 552	Railways Harbors Tunneling and Airports	43-44
17		15CV553	Masonry Structures	45-46
18		15CV561	Traffic Engineering	47-48
19		15CV564	Occupational Health and Safety	49-50
29	$6^{\text {th }}$ Sem	15CV61	Construction Management and Entrepreneurship	51-52
21		15CV62	Design of Steel Structural Elements	53-54
22		15CV63	Highway Engineering	55-56
23		15CV64	Water Supply and Treatment Engineering	57-58
24		15CV651	Solid Waste Management	59-60
25		15CV652	Matrix Methods of Structural Analysis	61-64
26		15CV653	Alternative Building Materials	65-66
27		15CV661	Water Resources Management	67-68
28		15CV663	Numerical Methods and Applications	69-70
29	$7^{\text {th }} \mathrm{Sem}$	15CV71	Municipal and Industrial Waste Water Engg	71-72
30		15 CV 72	Design of RCC and Steel Structures	73-74
31		15CV73	Hydrology and Irrigation Engineering	75-76
32		15CV742	Ground Water and Hydraulics	77-78
33		15CV744	Structural Dynamics	79-82
$\frac{34}{35}$		15CV751	Urban Transportation and Planning	83-84
35		15CV753	Rehabilitation and Retrofitting of Structures	85-86
36	$8^{\text {th }} \mathrm{Sem}$	15CV81	Quantity Surveying and Contracts Management	87-90
$\frac{37}{38}$		15CV82	Design of Pre-Stressed Concrete Eleinents	91-94
$\frac{38}{39}$		15CV831	Earthquake Engineering	95-96
$\frac{39}{40}$		15 CV 832	Hydraulic Structures il nga Con	97-98
40		15CV833	Pavement Design	99-102

USN

17MAT31

Third Semester B.E. Degree Examinhtion, June/July 2019
Engineering Matheiffatics - III
Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questionsshosing ONE full question from each module.
1 a. Obtain the fourier series of the faction $f(x)=x-x^{2}$ in $-\pi \leq x \leq \pi$ and hence deduce $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \frac{1}{4^{2}}+$
(08 Marks)
b. Obtain the Half Range Eourrer cosine series for the $(x)=\sin x$ in $[0, \pi]$.
(06 Marks)
c. Obtain the constant term and the coefficients of first sine and cosine terms in the fourier expansion of y given

(06 Marks)

2 a. Obtain the fourier series of $f(x)=\frac{\pi-x}{2}$ in $\left.2 \pi\right]$ and hence deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+$

(08 Marks)
b. Find the fourier half range cosine series of the tith $\mathrm{ction} f(x)=2 x-x^{2}$ in $[0,3]$.
(06 Marks)
c. Express y as a fousier, series upto first hap nop given

(06 Marks)

Module-2

330

3 a. Find the fourier transiorm of $f(x)=\left\{a^{2}-x^{2} ;|x| \leq a\right.$
 -
(08 Marks)
b. Find the fomer sine transtorm of and hence evaluate $\int_{0}^{\infty} \frac{x \sin a x}{1+x^{2}} d x ; a>0$
(06 Marks)
c. Obtain the z-transform of $\cos \eta \theta$ and $\sin n \theta$.
(06 Marks)

4 a. Find the fourier transform of $f(x)=x e^{-|x|}$.
(08 Marks)
b. Find the fourier cosine transform of $f(x)$ where

$$
f(x)=\left\{\begin{aligned}
x^{2}, & 0<x<1 \\
2 ; & 1<x<2 \\
0 & \mid x>2
\end{aligned}\right.
$$

(06 Marks)
c. Solve $u_{n+2}+6 u_{n+1}+9 u_{n}=2^{n}$ with $u_{0}=u_{1}=0$ using z-transform.
(06 Marks)

Modules

5 a. Fit a straight line $y=a x+b$ for the following da the method of least squares.

$\mathrm{x}:$	1	3	4	6	8	9	11	14
$\mathrm{y}:$	1	2	4		3	7	8	9

(08 Marks)
b. Calculate the coefficient of correlation for the data:

(06 Marks)
c. Compute the real root of clog $19 \mathrm{x}-1.2=0$ by the method of false position. Carry out 3 iterations in $(2,3)$.
(06 Marks)

6

a. Fit a second degreepabola to the following data $y=a+b x+\mathrm{cx}^{2}$.

$\mathrm{x}:$	1	1.5	2,5	3	3.5	4	
$\mathrm{y}:$	1.1	1.3	16	2.	2.7	3.4	4.1

(08 Marks)
b. If θ is the all between two regression lines, show that $\tan \theta\left(\frac{1-r^{2}}{r}\right) \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$; explain (in) aficance of $r=0$ ad $\% \pm 1$.
(06 Marks)
c. Using Newton Raphson method, find the real rathe equation $3 x=\cos x+1$ near $\mathrm{x}_{0}=0.5$. Carry out 3 iterations:

Module:
7 a. From the following table, estimate the ntinber of students obtained marks between 40 and 45.

Marks a					
No. ofstudents	$30-40$	$30-50$	$50-60$	$60-70$	$70-80$

(08 Marks)
b. Use Nefutoys dividend formula trifind $\mathrm{f}(9)$ for the

(06 Marks) c. Ind the approximateralue of $\int_{0}^{\pi^{\prime 2}} \sqrt{\cos \theta} d \theta$ by Simpson's $\frac{1}{3}$ rd rule by dividing $\left[0, \frac{\pi}{2}\right]$ into 6 equal parts,
(06 Marks)

8 a. The area A of a circle of diameter d is given for the following values:

d	\ddots	80	85	90	95
a	$:$	5026	5674	6362	7088

Calculate the area of circle of diameter 105 by Newton's backward formula.
(08 Marks)
b. Using Lagrange'sinterpolation formula to find the polynomial which passes through the points $(0,-12),(1,0),(3.6),(4,12)$.
(06 Marks)
c. Evaluate $\int_{4,3}^{5 / 2} \log _{6} x d x$ taking 6 equal parts by applying Weddle's rule.
(06 Marks)

$$
2 \text { of } 3
$$

Module-5

9 a. If $\overrightarrow{\mathrm{F}}=3 \mathrm{xy} \hat{\mathrm{i}}-\mathrm{y}^{2} \hat{\mathrm{j}}$, evaluate $\int_{\mathrm{C}} \overrightarrow{\mathrm{F}}$.dr where ' C ' is are of parabola $\mathrm{y}=2 \mathrm{x}^{2}$ from $(0,0)$ to $(1,2)$
b. Evaluate by Stokes theorem
$\oint_{c}(\sin z d x-\cos x d y+\sin y d z)$, where Cthe bounary of the rectingle $0 \leq x \leq \pi$; $0 \leq y \leq 1, z=3$
(06 Marks)
c. Prove that the necessary findion for the $I=\int_{x_{1}}^{x_{2}} f(x \cdot y, y) d x$ to be extremum is $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$

(06 Marks)
a. Using Green's theorem evaluate $\int_{\mathrm{C}}\left(3 \mathrm{x}^{2}-\mathrm{O}_{2}\right) \mathrm{dx}+(4 y-6 x y) \mathrm{dy}$, where C is the boundary of the regio bounded by the lines $x=0, y<x+y=1$.
(08 Marks)
b. Find the xxternal value of $\int_{0}^{\pi / 2}\left[\left(y^{\prime}\right)+4 y \cos x\right] d x$. Giventhat $y(0)=0, y\left(\frac{\pi}{2}\right)=0$.
c. Prove that the shortest distace between two poitro ir plane is along atfaight line joining them.

(06 Marks)

Third Semester B.E. Degree Examination, June/July 2019 Additional Mathematics - I

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Find the sine of the angle between $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{1}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$.
(08 Marks)
b. Express the complex number $\frac{(1+1)(1+3 i)}{1+5 i}$ in the form $a+i b$.
(06 Marks)
c. Find he modulus and amplitude of $\frac{(1+i)^{2}}{3+i}$.
(06 Marks)

2 a. Show that $(\mathbf{1}+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-1 \sin \theta)^{n}=2^{n+1} \cdot \cos ^{n}\left(\frac{\theta}{2}\right) \cdot \cos \left(\frac{n \theta}{2}\right)$. (08 Marks)
b. If $\vec{a}=2,0 \hat{i}+4 \hat{k}$ and $\vec{b}=3 \hat{i}-4 \hat{j}+\hat{k}$, then prove that \vec{a} is perpendicular to \vec{b}. Also find $|\vec{a} \times \vec{b}|$.
(06 Marks)
c. Determine λ such that $\overrightarrow{\mathrm{a}}+\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}-4 \hat{\mathrm{k}}$. $\mathrm{c}=\hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ are coplanar. (06 Marks)

Module-2

3 a. If $y=\cos (m \log x)$ then prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+n^{2}\right) y_{n}=0$.
(08 Marks)
b. Find the angle ofintersection of the cutyes $r^{2} \sin 2 \theta=a^{2}$ and $r^{2} \cos 2 \theta=b^{2}$.
(06 Marks)
c. Find the pedal equation of the curs $x=a(1+\sin \theta)$
(06 Marks)

OR

4 a. Obtain the Maclaurin's series expansion of log sec x up to the terms containing x^{6}. (08 Marks) b. $f y=\operatorname{cosec}^{-1}\left(\frac{x^{\frac{1}{2}}+y^{\frac{1}{2} t}}{x^{\frac{1}{3}}+y^{\frac{1}{3}}}\right)$, prove that $x u_{x}+y_{0}=-\frac{1}{6} \tan u$.
(06 Marks)
c. Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$,here $u=x+y+z, y=y+z, w=z$.

Module-3

5 a. Obitair a reduction formula $o r \int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$.
(06 Marks)
c. Evaluate $\int_{0}^{1 \sqrt{x}} \int_{x} x d y d x$
(06 Marks)

6 a. Evaluate $\int_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y+z} d z d y d x$.
b. Evaluate $\int_{0}^{\infty} \frac{x^{6}}{\left(1+x^{2}\right)^{9 / 2}} d x$.
c. Evaluate $\iint_{A} x y d x d y$ where A is the are bounded by the circle $x^{2}+y^{2}=a^{2}$ in the first quadrant.
(06 Marks)
7. A. A particle moves along the $\overrightarrow{\mathrm{r}}=\cos 2 \mathrm{t} \hat{\mathrm{i}}+\sin 2 \mathrm{t} \hat{\mathrm{j}}+\mathrm{t} \hat{\mathrm{K}}$ Ind the components of velocity and acceleration at $\mathfrak{t}=\frac{\pi}{4}$ and $\sqrt{2} \hat{\mathrm{i}}+\sqrt{2} \hat{\mathrm{j}}+\hat{\mathrm{k}}$.
(08 Marks)
b. Find divergence and çirtof the vector $\vec{F}=(x y z+y z) \hat{i}+\left(3 x^{2}+y^{2} z\right) \hat{j}+\left(x z^{2}-y^{2} z\right) \hat{k}$.
(06 Marks)
c. Find the direction at derivative of $\left.\phi=x^{2}+1,1,1\right)$ in the direction of $\hat{i}+\hat{j}+2 \hat{k}$.
(06 Marks)
8 a. Find the angle between the tangent the curve $x=t^{2}+t^{3}, z=t^{4}$ at $t=2$ and $t=3$.
b. Find curl (curl \vec{A}) where $\vec{A}=x y \hat{i}+y^{2} z \hat{j}+z^{2} y \hat{k}$,
c. Find the constants a, b, bruch that the vert old $(\sin y+a z) \hat{i}(b x \cos y+z) \hat{j}+(x+c y) \hat{k}$ is irrotational.

Module -5

a. Solve $\frac{d y}{d x}=\frac{y}{x}+\sin \left(\frac{y}{x}\right)$.
b. Solve
$\frac{d y}{d x}+y \cot x=\sin x$
$+4$

(08 Marks)
(06 Marks)
(06 Marks)

OR

10 a. Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$.
(08 Marks)
b. Solve $x^{2} \frac{d y}{d x}=3 x^{2}-2 x y+1$.
(06 Marks)
c. Solve $\left[y\left(1+\frac{1}{x}\right)+\cos y\right] d x+[x+\log x-x \sin y] d y=0$.
(06 Marks)

Third Semester B.E. Degree Examination, Jume/Juty 2019

Fluid Mechanics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing
 ONE full question from each modules

Module-1

1 a. Define the following with symbols and units :
i) Weight density
ii) Specific volume
iii) Density.
(06 Marks)
b. What do you mean by single column manometer? Defive the expression for vertical single column manometer.
(06 Marks)
c. The right limb of a simple U-tube manometer containing mercury is open to the atmosphere while the left limb is connected to a pipe which a fluid of sp.gr. 0.9 is flowing. The centre of the pipe is 12 cm below the level of the mereury in the right limb. Find the pressure of fluid in the pipedf difference of mercury level in the two limb is 20 cm .
(08 Marks)

2 a. What is capillarity? Derive an expression for capillarity tise for a liquid in a glass tube.
(06 Marks)
b. Explain difference between i) absolute and gauge pressurre ii) Newtonian and non Newtonian iii) ideal fluid and real fluid iv) simple manometer and differential manometer. (08 Marks)
c. Calculate pressure due to a column of 0.4 ofi) water ii) an oil of sp.gr 0.9 and iii) mercury of sp.gt 13.6. Take density water $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(06 Marks)

Module-2

3 a. Derive an expression for total pressure and centre of pressure of a inclined plane surface immersed in a liquid.
(08 Marks)
b. Determineeth total pressure and depth of centre of pressure on a plane rectangular surface of 1 m wide and 3 m deep when its upper edge is horizontal and i) coinsides with water surface ii) 2 m below thesfree water surface,
(06 Marks)
c. A circular plate 3 m diameter is immersed in water in such way that its greatest and least depth below the free mirface are 4 m and 1.5 m respectively. Determine the total pressure on one face of the plate and position of centre of pressure.
(06 Marks)

4 a. Define :

OR

i) Uniform and non-uniform flow
ii) Rotational and irrotational flow
iii) Stream line and path line
iv) Laminar and turbulent flow.
(08 Marks)
b. Derive the three dimensional continuity equation in the Cartesian coordinates. (06 Marks)
c. A 40 cm diameter pipe, conveying water, branches into two pipes of diameter 30 cm and 20 cm respectively. If the average velocity in the 40 cm pipe is $3 \mathrm{~m} / \mathrm{sec}$. Find the discharge in the pipe. Also determine velocity in 20 cm pipe if the average velocity in 30 cm diameter pipe is $2 \mathrm{~m} / \mathrm{sec}$.
(06 Marks)

Module- 3

a. Derive an expression for Bernoulli's equation and state the assumption made for such a derivation.
(06 Marks)
b. What is venturimeter? Derive an expression for the discharge through venturimeter.
(08 Marks)
c. Water flowing through a pipe having diameter 30 cm and 15 cm at the bottom and upper end respectively. The intensity of pressure at the bottom end is $29.43 \mathrm{~N} / \mathrm{cm}^{2}$ and pressure at the upper end is $14.715 \mathrm{~N} / \mathrm{cm}^{2}$. Determine the difference datum head if the rate of flow through the pipe is $501 \mathrm{it} / \mathrm{sec}$.
(06 Marks

OR

6 a. Define the terms : i) Free vortex
ii) Forced vortex

(04 Marks)
b. State the momentum equation. How will you apply the momentum equation for determining the force exerted by flowing liquid on a bend?
(08 Marks)
c. $250 \mathrm{lit} / \mathrm{sec}$ of water is flowing a mape having diameter of 300 mm . If the pipe is bent by 135° (i.e changes from initial to final direction is 135°). Find the magnitude and direction on of the resultant force on the bend. The pressure of water flowing is $39.24 \mathrm{~N} / \mathrm{cm}^{2} . \quad(08$ Marks)

Module-4

7 a. Prove that the discharge over triangular notch is $Q=8 / 15^{2} \operatorname{cd} \sqrt{2 \mathrm{~g}} \tan \theta / 2 \mathrm{H}^{3 / 2}$.
(08 Marks)
b. Explain the expetimental determination of hydraulic coefficients $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{V}}$ and C_{C}. (06 Marks)
c. The head of water over an orifice of diameter 100 mm is 5 m . The water coming out from the orifice is collected in a circular tank of diameter 2 m . The rise of water level in this tank is 0.45 min 30 Sec . Also coordinates of certain print of jet, measured by venacontracts are 100 cm horizontal and 5.2 cm vertical. Find the hydrauliccoefficients $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{V}}$ and C_{C}.
(06 Marks
OR
8 a. Distinguish between : Dotch and Weir ii) Orifice and mouthpiece.
(04 Marks)
b. What is cipolleti weir? Prove that the discharge through cipolleti Weir is given by $\mathrm{Q}=2 / 3 \mathrm{~cd} \sqrt{2 \mathrm{~g}} \mathrm{H}^{3 / 2}$
(08 Marks)
c. The water flowing in a rectangular chamel of 1.2 m wide and 0.8 m deep. Find the discharge over the rectangular Weir of the crest length 70 cm . If the head of water over the crest of weir is 25 cm and water form channel flows over the weir. Take $\mathrm{C}_{\mathrm{d}}=0.60$ Neglect end contraction but consider veloeity of approach.
(08 Marks)

Module-5

9 a. Explain the term s with beat sketch: i) Pipes in parallel ii) Piopes in series iii) Hydraulic gradient line iv) Totatenergy line.
b. Three pipes of length $800 \mathrm{~m}, 500 \mathrm{~m}$ and 400 m and of diameter $500 \mathrm{~mm}, 400 \mathrm{~mm}$ and 300 mm respectively are connected by a single pipe of length 1700 m . Find the diameter of the single pipe.

(06 Marks)
c. Find the diameter of the pipe of length 2500 m when the rate of flow of water through the pipe is $0.25 \mathrm{~m}^{3} / \mathrm{sec}$ and head loss due to friction is 5 m . Take $\mathrm{C}=50$ in Chezy's formula.
(06 Marks)

OR

10 a. What do you mean by equivalent pipe? Obtain an expression for equivalent pipe. (08 Marks)
b. Derive expression for the loss of head due to sudden expansion in the pipe.
(08 Marks)
c. Find the loss head when pipe of diameter 200 mm is suddenly enlarged to a diameter of 400 mm . The rate of flow of water through the pipe is $250 \mathrm{lit} / \mathrm{sec}$.
(04 Marks)

17CV34

Third Semester B.E. Degree Examination, June/July 2019
 Basic Surveying

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain fundamental principles of surveying.
(06 Marks)
b. Differentiate between (i) Plan and map (ii) Accuracy and Precision.
(06 Marks)
c. A survey line BAC crosses a river, A and C being on the neat and distant banks respectively. Standing at D , a point 100 meters measured perpendicular to AB from A , the bearing of C and B are 230° respectively, AB being 50 meters. Find the width of the river. (08 Marks)

OR

2 a. Define surveying Briefly explain the classification of surveying
(08 Marks)
b. Explain the metheds of chaining on sloping ground.
(04 Marks)
c. A steel tape 30 meters long standardizing at $60^{\circ} \mathrm{F}$ with a pull of 10 kg and was used in measurigg a baseline. Find the correction per tape length if the temperature at the time of measurement was $85^{\circ} \mathrm{F}$ and pull exerted was 16 kg . Weight of 1 centimeter cube of steel is 7.86 gràms and total weight of tape is $0.8 \mathrm{~kg} . \mathrm{E}=2.1 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$ and co-efficient of expansion of tape per $1^{\circ} \mathrm{F}=6.2 \times 10^{-6}$.
(08 Marks)

Module- 2

3 a. Differentiate between (i) Fore bearing and báck bearing (ii) Magnetic bearing and Tone bearing (iii) Magnetic declination and magnetic dip.
(06 Marks)
b. Explain the uses of theodolite.
(06 Marks)
c. Determine the ficluded angles in a closed traverse ABCDA conducted in a clockwise direction, given the following bearing observed with a prismatic compass.

Line,	AB	BC	CD
Forebeang	40°	70°	210°
Apply check.	280°		

Apply êheck.

OR

4 a. What are the different methods of measuring horizontal angle using theodolite? Explain any one in detail.
(10 Marks)
b. Following bearirty were observed with a prismatic compass.

Line	AB	BC	CD	DE	EA
Fore bearing	$74^{\circ} 0^{\prime}$	$91^{\circ} 0^{\prime}$	$166^{\circ} 0^{\prime}$	$177^{\circ} 0^{\prime}$	$289^{\circ} 0^{\prime}$
Back bearing	$254^{\circ} 0^{\prime}$	$271^{\circ} 0^{\prime}$	$343^{\circ} 0^{\prime}$	$0^{\circ} 0^{\prime}$	$109^{\circ} 0^{\prime}$

Where do you suspect the to cal attraction? Find the correct bearings.
(10 Marks)

Module- 3

5 a. Derive distance and elevation formulae for stadia tachometry, when staff held normal to the line of sight, for both an angle of elevation and an angle of depression.
(08 Marks)
b. The following data is available for a closed traverse ABCDA. Determine closing error and adjust the traverse using transit rule. Take co-ordinates of A (200, 100), compute coordinates of all the stations.

Line	AB	BC	CD	DA
Length (m)	250	123	256°	108
Bearing	$86^{\circ} 42^{\prime}$	$178^{\circ} 06^{\prime}$	$270^{\circ} \theta^{\circ}$	$2^{\circ} 0^{\prime}$

(12 Marks)

OR

(08 Marks)
6 a. What are the different methods of balancing the traverse? Explain them.
b. A tachometer is set up at an intermediate point on a traverse course PQ and following observations are made on a vertically held staff.

Staff Station	Vertical angle	Staff intercept	Axial hatireadings.
P	$+8^{\circ} 36^{\prime}$	2.350	2.105
Q	$+6^{\circ} 06^{\circ}$	2.055	

The instrument is fitted with annalistic lens and the constant is 100 . Compute the length of PQ and reduced level of Q , that of P being 321.50 meters.
(12 Marks)

Module-4

7 a. Explain temporary adjustments of a dumpy level.
(06 Marks)
b. Define the following terms: (i) Bench mark
(ii) Back sight (iii) Reduced level
(iv) Datum.
(04 Marks)
c. The following staff readings were observed successively with a level, the instrument have been moved forward after the second, fourth and eight readings.
$0.875,1.235,2.310,1.385,2.930,3.125,4.125,0.120,1.875,2.030,3.765$.
The first reading was taken with the staff held ypon a bench mark ofelevation 132.135 m . Enter the readings in apage of level book and reduce the levels. Apply the usual check.
(10 Marks)

OR

8 a. Compare rise and fall method of reducing levels with the height of collimation method.
b. The following consecutive readings were taken with a level and 5 meter leveling staff on a continuously sloping ground at common interval of 20 meters.
$0.585,1.830,1.925,2.825,3730,4.685,0.825,2.005,3.110,4.485$.
The reduced level of first point was 218.125 m . Rule out a page of level book and enter the above readings. Calculate the reduced level of points by rise and fall method and also gradient of the line foiring first and last point.
(14 Marks)

Module-5

9 a. What are the different methods of contouring? Discuss the merits and demerits of each.
(08 Marks)
b. The following give the values in meters of the offsets taken from a chair line to an irregular boundary calculate the area included between the chain line and irregular boundary and first and last offsets by (i) Simpson rule (ii) Trapezoidal rule.

Distance in m	0	50	100	150	200	250	300	350	400
Off sets in m	10.6	15.4	20.2	18.7	16.4	20.8	22.4	19.3	17.6

(12 Marks)

OR

10 a. What are the different characteristics of contour lines? Explationgitineat sketches.
b. Discuss the different methods of determining areas.

Discuss the different meth mankment with Calculate the volume of earth work by prismoidal rule in a road embankment with following data:

Chainage along centre line	0	100	200	300	400
Ground level	201.700	202.900	202.400	204.700	205.900

Formation level at chainage 0 is 203.300 m, top width is 12.0 meters, side slope is 2 to 1 and longitudinal gradient is 1 in 100. The ground is level across the centre line.
(10 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

USN

Third Semester B.E. Degree Examination, June/July 2019
 Engineering Geology

Time: 3 hrs.
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Write sketches wherever required.

Module-1

1 a. Explain major shells of the Earth interior with reference to its composition and density.
(10 Marks)
b. Explain important 'light dependent' physical properties of minerals with examples.(06 Marks)
c. What are Rock forming and Ore forming minerals and give two examples each. (04 Marks)

OR

2 a. Briefly explain: i) SlAL and SIMA ii) Discontinuities in earth's interior. (06 Marks)
b. Write a note on application of geology in civil engineering projects. (08 Marks)
c. Describe importart physical properties and engineering uses of following minerals :
i) Gypsum
ii) Bauxite.
(06 Marks)

Module-2

3 a. What are sedimentary rock? Explain its classification based on grain size of sediments giving example.
(08 Marks)
b. Explain broad classification of igneous rocks giving examples relevant to construction material.
(06 Marks)
c. Explain the properties and engineering uses of any one rock from each group :
i) Elastic sedimentary Rock
ii) Metamorphic Rocks.
(06 Marks)

OR

4 a. Explain the farmation of folds and joints and add a note on their importance in civil engineering.
(06 Marks)
b. Explain geological consideration of selection of damsite on inclined and faulted rocks.
(08 Marks)
c. Explan, I) Deformation of rock
ii) Rock Quality Designation (RQD).
(06 Marks)

Module- 3

5 a. What is Weathering? Briefly explain mechanical weathering.
(06 Marks)
b. Write a note on Watershed management.
(04 Marks)
c. What is an Earthquake? Discuss causes, effects and mechanism.
(10 Marks)

OR

6 a. Briefly explain geological work of running water and its importance in civil engineering.
(08 Marks)
b. Write a note on seismic resistant structures.
(06 Marks)
c. Explain
i) Drainage pattern
ii) Reservoir induced Seismocity.
(06 Marks)

Module-4

7 a. What is an Aquifer? With neat sketch, explain its types.
(06 Marks)
b. Explain Electrical resistivity method with resistivity curves for ground water exploration.
(10 Marks)
c. Write a nete on Ground water pollution.
(04 Marks)

OR

8 a. Explain Seismic method to understand subsurface geology.
(06 Marks)
b. Describe various method of artificial recharging of ground water.
c. Write a note on sea water intrusion and remedial measure.

Modile-5

9 a. What is Remote sensing? Write its principle and list important applications in civil engineering.
(10 Marks)
b. What are Toposheets and geological maps? Add a note on their uses in civil engineering.
c. What is disaster and explain its types.

OR

10 a. What is Global positioning system? Explain its concept and application in civil engineering.
b. Explain : i) Impact of mining on environment ii) LANDSAT imageries.
(10 Marks)
(10 Marks)

USN

Fourth Semester B.E. Degree Examination, June/July 2019

 Engineering Mathematics - IVTime: 3 hrs .

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. If $y^{\prime}+y+2 x=0, y(0)=-1$ then find $y(0.1)$ by using Taylor's series method. Consider upto third order derivative term.
(06 Marks)
b. Find $y(0.2)$ by using modified Euler's method, given that $y^{\prime}=x+y, y(0)=1$.

Take $\mathrm{h}=0.1$ and carry out two modifications at each step.
(07 Marks)
c. If $y^{\prime}=\frac{1}{x+y}, y(0)=2, y(0.2)=2.0933, y(0.4)=2.1755, y(0.6)=2.2493$ then find $y(0.8)$ by Milne's method.
(07 Marks)

OR

2 a. Use Taptor's series method to find $y(0.1)$ from $y^{\prime}=3 x+y_{\text {an }}^{2} y(0)=1$. Consider upto fourth derivative term.
(06 Marks)
b. Use Runge - Kutta method to find $y(0.1)$ from $y^{\prime}=x^{2}+y, y(0)=-1$.
(07 Marks)
c. Use Adam - Bashforth method to find $\mathrm{y}(0.4)$ from $\mathrm{y}=\frac{1}{2} \mathrm{xy}, \mathrm{y}(0)=1, \mathrm{y}(0.1)=1.0025$, $\mathrm{y}(0.2)=1.0101, \mathrm{y}(0.3)=10228$.
(07 Marks)

Module- 2

3 a. Express $x^{3}-5 x^{2}+6 x+1$ in terms of Legendre polynomials.
(06 Marks)
b. Find $y(0.1)$, by ising Runge - Kutta method, given that $y^{\prime \prime}+\mathrm{xy}^{\prime}+\mathrm{y}=0, \mathrm{y}(0)=1$, $y^{\prime}(0)=0$.
(07 Marks)
c. Solve Bessel's operation leading to $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$.
(07 Marks)

OR

4 a. Prove that $\mathrm{J}_{1 / 2}(\mathrm{x})=\sqrt{\frac{2}{\pi \mathrm{x}}} \sin \mathrm{x}$.
(06 Marks)
b. Find $y(0.4)$ by using Miline's method, given that $y(0)=1, y^{\prime}(0)=1, y(0.1)=1.0998$,

$$
y^{\prime}(0.1)=0.9946, y(0.2)=1.1987, y^{\prime}(0.2)=0.9773, y(0.3)=1.2955, y^{\prime}(0.3)=0.946
$$

c. State and prove Rodrigue's formula.
(07 Marks)
(07 Marks)

Module-3

5 a. Derive Cauchy - Riemann equations in Cartesian coordinates.
(06 Marks)
b. Find an analytic function $f(z)=u+i v$ in terms of z, given that $u=e^{2 x}(x \cos 2 y-y \sin 2 y)$.
(07 Marks)

(07 Marks)

OR

6
a. Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
b. Discuss the transformation $W=Z^{2}$.
(06 Marks)
c. Find a bilinear transformation that maps the points ∞, i, o in Z - plane into $-1,-i, 1$ in W - plane respectively.
(07 Marks)

Module-4

7 a. In a sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2 , out of 1000 such samples how many would be expected to contain atleast 3 defective parts?
(06 Marks)
b. If X is a normal variate with mean 30 and standard deviation 5 , find the probabilities that
i) $26 \leq x \leq 40$
ii) $X>45$
iii) $|\mathrm{X}-30|>5$

Given that $\phi(0.8)=0.288, \quad \phi(2.0)=0.4772, \phi(3)=0.4987, \phi(1)=0.3413$.
(07 Marks)
c. The joint density function of two continuous fandom variables X and Y is given by

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cll}
\mathrm{K} x y, & 0 \leq \mathrm{x} \leq 4, & 1<\mathrm{y}<5 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find i) K ii) $E(x)$ iii) $E(2 x+3 y)$.
(07 Marks)
OR
8 a. Derive mean and standard deviation of the Poisson distribution.
(06 Marks)
b. The joint probability distribution for two random variables X and Y as follows :

X	Y	-2	+	4
1	0.4	0.2	0	0.3
2	0.2	0.1	0.3	0

Find i) Expectations of $\mathrm{X}, \mathrm{Y}, \mathrm{XY}$ ii) SD of X and Y iii) Covariance of X, Y iv) Correlation of X and Y .
(07 Marks)
c. In a certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more ii) Less than 10 minutes iii) Between 10 and 12 minutes.
(07 Marks)

Module-5

9 a. A group of boys and girls were given in Intelligence test. The mean score, SD score and numbers in each group are as follows :
(06 Marks)

	Boys	Girls
Mear	74	70
SD	8	10
X	12	10

Is the difference between the means of the two groups significant at 5% level of significance? Given that to.05 $=2.086$ for 20 d.f.
b. The following table gives the number of accidents that take place in an industry during various days of the week. Test if accidents are uniformly distributed over the week.

Day	Mon	Tue	Wed	Thu	Fri	Sat
No. of accidents	14	18	12	11	15	14

Given that $X^{2}=11.09$ at 5% level for 5 d.f.
(07 Marks)
c. Find the unique fixed probability vector for the regular stochastic matrix.

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{07Marks}\\
1 / 6 & 1 / 2 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
$$

10 a. Define the following terms
i) Type I error and type II error.
ii) Transient state.
iii) Absorbing state.
b. A certain stimulus administered to each of the 12 patients resulted in the following increases of blood pressure $5,2,8,-1,3,0,-2,1,5,0,4,6$ Can it be concluded that the stimulus will
be general be aceompanied by an increase im blood pressure. Given that $t_{0.05}=2.2$ for of blood pressure $5,2,8,-1,3,0,-2,1,5,0,4,6$. Can it be concluded that the stimulus will
be general be aceompanied by an increase in blood pressure. Given that $t_{0.05}=2.2$ for 11 d.f.
(07 Marks)
c. If $\mathrm{P}=\left[\begin{array}{ccc}0 & 2 / 3 & 1 / 3 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$. Find the corresponding stationary probability vector.
(07 Marks)

OR

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

USN

Fourth Semester B.E. Degree Examination, Lume/July 2019
Additional Mathematics - II
Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosthg oNE full question from cach module.

Nodule-1

1 a. Find the rank of the matrix $\left[\begin{array}{ccc}2 & 4 \\ -1 & 4 & 3 \\ -1 & 5 & 7\end{array}\right]$ by elementary rowsperations.
(08 Marks)
b. Test for consistenzy and saive $x+y+z=6, \quad x-y+2 z=5,3 x+y+z=8$.
(06 Marks)
c. Solve the system of equans by Gauss eliminathemethod:
$x+y+z=9 \quad 2 y+3 z=8$
$2 x+y z z=3$
(06 Marks)
2 a. Find all the eigen values and the corresponging eigen vectors of the matrix

b. Solve by Gauss elimination method
$2 x_{1}+x_{2}-2 x_{3}=5$.
c. If $\mathrm{A}=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$ find A^{-1} by Cayley Hamthet theorem.
(06 Marks)
(06 Marks)

3 a. Solve $\left.\left.\frac{d^{3} y}{d x^{9}}\right)^{2} \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-8 y\right\}$.

Module-2

b. Solve $6 \frac{d^{2} y}{d x^{2}}+17 \frac{d y}{d x}+12 y=e^{-x}$.
(08 Marks)
c. Solve $y^{\prime \prime}-4 y^{\prime}+13 y=\cos 2 x$.
(06 Marks)
(06 Marks)
a. Solve $\left.\frac{d^{3} y}{d x+6 d^{2} y}+11 \frac{d y}{d x}+6 y+0^{2}\right\}^{2}$
(08 Marks)
b. Solve $y^{\prime \prime}+2 y+y=\frac{e^{\frac{x}{2}}+e^{-\frac{x}{2}}}{2}$
(06 Marks)
c. Solve $y^{\prime \prime}+2 y^{\prime}+y=2 x+x^{3}$.
(06 Marks)
5 a. Find $\mathrm{L}[\cosh a t]$.
b. Find $L\left[\mathrm{e}^{-2 t} \sinh 4 t\right]$
c. Find $R\left\{\sin _{3} 2 t\right\}$.

Module- 3

6. a. Show that $\int_{0}^{\infty} t^{3} e^{-s t} \cdot \sin t d t=0$.

(08 Marks)
c. Express $f(t)=\left\{\begin{array}{cc}t, & 0<t<4 \\ 5, & t>4\end{array}\right.$ in terms of unitsep function and hence fird their Laplace Transforms.

Module-4

(06 Marks)

7 a. Find the inverse Laplace Transform of $\frac{3}{\mathrm{~s}^{2}}+\frac{2 \mathrm{e}^{-s}}{\mathrm{~s}^{3}}-\frac{3 \mathrm{e}^{-2 \mathrm{~s}}}{\mathrm{~s}}$
(09 Marks)
b. Find $L^{-1}\left[\frac{s^{3}+6 s^{3}+12 s+s}{s^{6}}\right]^{8}$
c. Find the inverse Laplace Transform of $\frac{s+5}{s^{2}-6 s+43}$
(06 Marks)
(06 Marks)

8 a. Solve bysing Laplace Transform $\frac{d^{2} y}{} y^{2}+k^{2} y=0$, given that $y(0)=2, y^{\prime}(0)=0$.
(08 Marks)
b. Find inverse Laplace Transform of

Modúa -5
b. A six faced die which the nungres 1 to 6 are marked is thrown. Find the prob
a. Find the probagitit that a leap year
b. A six faced die n which the nump
(i) 3 (ii, an odd number coming up.
c. State apdrave Bayee's theorenno
a. Find the probadility that a leap year
b. A six faced die on which the nump
(i) 3 (ii) an odd number comingup
c. State apdrave Bayee's theoremev

部
10 a. Hatem is given to the students
OR

(06 Marks)
(06 Marks) "trespectively. Findeqe probability that the problem is colved.
(06 Marhs)
(06 Marks)
b. For any three events A, B, C, prove that $P\{(A \cup B) / C\}=P(A / C)+P(B / C)-p\{(A)$ (08 Marks)
c. Three mactinges A, B and C produce respectively $60 \%, 30 \%$ and 10% of the total number of items of a factory. The percentages of defective cutput of these machines are respectively $2 \%, 3 \%$ and 4%. An item is selected at random and is found defective. Find the probability that the item was produced by machine C.
(06 Marks)

USN

17CV42

Fourth Semester B.E. Degree Examingtion, June/July 2019
 Analysis of Determinate Structures

Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing
 ONE full guestion from each module.
 2. Assume any missing data suitablf.

1 a. Differentiate between tayeally determinate and determinate beams with an example for each.
(06 Marks)
b. Define degree offed What is the degree of freedom for a
i) Fixed support ii) Hinged suppot
(04 Marks)
c. Determine staticeand kinematic indeterminany for the following shown in Fig.Q.1(c).

OR
2 a. Deterfing the forces in all the pembers of the trussshown in Fig.Q.2(a) use the method of joint
(12 Marks)

Fig.Q.2(a)

- 8
b. Determine the forces in all the members of the truss shown in Fig.Q.2(b) by the method of section.
(08 Marks)

Module-2

3 a. Derive moment curvature equation for deflection.
(04 Marks)
b. Determine the slope and deflection at free end of a cathever beam subjected to point load 'W' at free end and of span ' L ' with constant EI use Ma aculay's method.
(08 Marks)
c. Using Conjugate beam method Determine the thanimum deflection and slopes at support for a simply supported beam subjected to udl of wetriun over a span of L m with constant EI.

(08 Marks)

4 a. Determine the slope at left support deflection at mid span of simply supported beam subjected to the loads as shoty in Fig.Q.4(a) by usifg Maculay's method take $\mathrm{El}=200 \mathrm{MN}-\mathrm{m}^{2}$.
(10 Marks)
b. Determine the slope at A and deflection at mid span for the above beam shown in Fig.Q.4(b) by using moment area metho $\mathrm{EF}=200 \mathrm{MN}-\mathrm{m}^{2}$.
(10 Marks)

5 a. Obtaty expression for strain ginergy stored in a memben when it subjected to bending moment.
(06 Marks)
b. Find the deflection at C due to a point load acting shown in Fig.Q5(b) by using strain energy method.
c. Find the defleetion under the concenteated load for the beam shown in Fig.Q.5(c), by using Castigline theorem. Take $\mathrm{E}=10^{8} \mathrm{kN} / \mathrm{m}^{2}$ and $\mathrm{I} 4 \mathrm{I} \times 10^{-6} \mathrm{~m}^{4}$.
(06 Marks)

6 a. Determine the hofintal and vertical deflection at the free end of bracket shown in Fig.Q.6(a).

Fig.Q.6(a)
b. Determine the slope and deflection at free end of cantilever ising unit load method take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=12 \times 10^{6} \mathrm{~mm}^{4}$ Refer Fig.Q. 6 (b)
(10 Marks)

7 a. A three hinged parabolic arch of $\frac{20}{2} 20 \mathrm{~m}$ and rise 4 m carries a udl of $20 \mathrm{kN} / \mathrm{m}$ run on the left half of the span find the maxtum BM for the arch and afso determine normal thrust and radial shear at a point 5 m fromenen support.
(10 Marks)
b. Show that the shape of cable parabolic when the supports are at the same level and is subjected to udl of w forenit length over the entirespan also find the length of the cable.
(10 Marks)

OR

8 a. A cable of spa 00 m and central dip 4 m anjes a udl of $20 \mathrm{kN} / \mathrm{m}$ over the whole span. Find: i) Maximurn tension in the cable Minimum tension in the cable iii) Length of cable iv) Worizontal and vertical forces transmitted on to the supporting pier if the cable passed a smooth frictionless pulley.
(10 Marks)
b. Show that 開e parabolic shape is a fuptcular shape for a here hinged arch subjected to udl over its ${ }^{\text {entire span. }}$

Module-5

9 a. Define influence line diagrain, what are the uses of \mathbb{E} ?
(04 Marks)
b. A simple girder of 20 m span is traversed by moving udl of length 6 m with an intensity of $20 \mathrm{kN} / \mathrm{m}$ from left to right. Find the maxinumbending momett and maximum positive and negative shear forte at section 4 m from left sûp port also find the bsolute maximum bending moment that mocur any where in the girder. [Ref.Fig.Q.9(5)]
(16 Marks)

Fig.Q.9(b)

* 2 raw the unit loadufluence line diagrans for the reactions at supports of a simply supported beam.
b. A simply supported beam shown iftig.Q.10(b) is subjected a set of four concentrated loads which move fion le to right. Défermine: i) Maximum bending moment and shear force at a section of 6 m from left support ii) Absolute maximum shear force and absolute maximum bending moment. Use influence line principle.
(16 Marks)

Fig.Q.10(b)

3 of 3
-

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Missing data may suitably be assumed.

Module-1

1 a. Explain Dimensionally Homogeneous equation. Give any two examples.
(10 Marks)
b. Using Buckingham's π - theorem, show that the velocity through a circular orifice is given by $\mathrm{V}=\sqrt{2 \mathrm{gH}} \phi\left[\frac{\mathrm{D}}{\mathrm{H}}, \frac{\mu}{\mathrm{DVH}}\right]$, where H is head causing flow, μ is coefficient viscosity,
$\rho=$ mass density and $\mathrm{g}=$ gravitational acceleration. (10 Marks)

OR

2 a. Derive an expression for kinematic and dynamic similarities.
(04 Marks)
b. In the model test of a spillway the discharge and velocity of flow over the model were $2 \mathrm{~m}^{3} / \mathrm{s}$ and $1.53 \mathrm{~m} / \$$ respectively. Calculate the velocity and discharge over the prototype which is 36 times the model size.
(08 Marks)
c. A soto cylinder 2 m in diameter and 2 m high is floating ir water with its axis vertical. If the specific gravity of the material of cylinder is 0.65 , fid its metacentric height. State also whether the equilibrium is stable or unstable.
(08 Marks)

Module-2
3 a. Explain various types of flows in channel.
(10 Marks)
b. A canal of trapezoidal section has bed width of 8 m and bed slope of 1 in 4000 . If the depth of flow is 2.4 m and side slopes of the channel are 1 H to 3 V , then determine the average velocity and the discharge carried bye the channel. Also compute the average shear stress at the channel boundary. Take $\mathrm{C}=56$.
(10 Marks)

4 a. Obtain the conditions of most economical trapezoidal section in which side slope is constant.
(10 Marks)
$\mathrm{b}_{\mathrm{t}} \mathrm{A} 8 \mathrm{~m}$ wide channel conveys $15 \mathrm{~m}^{3} / \mathrm{s}$ of water at a depth of 1.2 m . Obtain the following :
i) Specific energy of the flowing water.
ii) Critical depth, Critical velocity and minimum specific energy.
iii) Froude number and state whether flow is subcritical or supercritical.
(10 Marks)
Modules
5 a. Derive an expression for loss of energy head for hydraulic jump.
(10 Marks)
b. In a rectangular channel of 0.5 m width, a hydraulic jump occurs at a point where depth of water flow is 0.15 m and Froude number is 2.5 obtain the following :
i) Sp . Energy
ii) Critical and subsequent depths
iii) Loss of head and
iv) Energy dissipated.
(10 Marks)

OR

1 of 2

6 a. Derive an expression for length of Back water curve.
(10 Marks)
b. In a rectangular channel of width 24 m and depth of flow 6 m , the rate of flow of water is $86.4 \mathrm{~m}^{3} / \mathrm{S}$. If the bed slope of the channel is 1 in 4000 then find the slope of the free surface of water. Take $\mathrm{C}=60$.
(10 Marks)

Module-4

7 a. Derive an expression for impulse momentum equation.
(05 Marks)
b. Derive an expression for thrust exerted by the jet strikes a stationary eurved vane at one end tangentially when the vane is symmetrical.
(07 Marks)
c. A jet of water from a nozzle is deflected through 60° from its original direction by curved vane which enters tangentially without shock with a velocity of $30 \mathrm{~m} / \mathrm{s}$ and leaves with a mean velocity of $25 \mathrm{~m} / \mathrm{s}$. If the mass issued from nozzle per second is $0.8 \mathrm{~kg} / \mathrm{s}$, calculate the magnitude and direction of the resultant force on the vane, if the vane is stationary.
(08 Marks)

OR

8 a. Explain classification and efficiencies of tuabines.
(10 Marks)
b. A pelton wheel is to be designed for the following specifications :

Shaft power $=11,772 \mathrm{~kW}$; Head $=380 \mathrm{~m}$; Speed $=750 \mathrm{r}$. p. m ; Overall efficiency $=86 \%$ Jet diameter is not to exceed one - sixth of the wheel diameter. Determine
i) Wheel diameter
ii) No. of jets required
iii) Diameter of the jet.

Take $\mathrm{K}_{\mathrm{v}_{1}}=0.985$ and $\mathrm{K}_{\mathrm{u}_{1}}=0.45$.
(10 Marks)

Module-5

9 a. With the help of neat sketches, explain Franci's invard flow reactionturbine.
(10 Marks)
b. Calculate the diameter and speed of the runger of a Kaplan turbine developing 6000 kW under an effective head of 5 m . Overall efficiency of the turbine is 90%. The diameter of boss is 0.4 times the external diameter of the runner. The furbme speed ratio is 2.0 and flow ratio 0.6 . What the specific speed of the turbine?
(10 Marks)

OR

10 a. Explain with neat sketches, emponents and working of a centrifugal pump.
(10 Marks)
b. A centrifugal pump impellee runs at $80 \mathrm{r} . \mathrm{p} . \mathrm{m}$ and has outlet vane angle of 60°. The velocity of flow is $2.5 \mathrm{~m} / \mathrm{s}$ throughout and diameter of impeller at exit is twice that at inlet. If the manometric head is 20 m and the manometric efficiency is 75%, determine
4 it The diameter of umpeller at the exit ii) Inlet vane angle.
(10 Marks)

Fourth Semester B.E. Degree Examination, June/Juły 2019 Concrete Technology

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the constituents of cement with their percentage and functions.
(10 Marks)
b. Define Fineness modulus. Explain test procedure to determine the Fineness modulus and Importance of Fineness modulus.
(10 Marks)

OR

2 a. What are Bogue's compounds? Briefly explain their contribution towards gaining of strength of cement with graph.
(10 Marks)
b. What is an Admixture? What are the effects of air entrainment and Retarders on the properties of conerete?
(10 Marks)

Module- 2

3 a. Define Workability. Briefly explain the factors which affects the workability of concrete.
b. What is the Importance of curing in concrete? Briefly discuss any two methods.
(10 Marks)

OR

4 a. Mention the various stages of manufacturing of concrete. Discuss any two stages. (10 Marks)
b. Explain good and bad practices of making and using fresh concrete.
(10 Marks)

Module-3

5 a. Explain the faetors affects the strength of concrete.
(10 Marks)
b. Write short notes on: i) Shrinkage of concrete
ii) Creep.
(10 Marks)

OR

6 a. What isgurability of concrete? Explain the factors affecting the durability of concrete.
(10 Marks)
b. Mention various non-destructive testing of concrete. Explain any two methods in brief.
(10 Marks)

Module-4

7 Design a concrete m for M_{25}.
a. Grade designation: M_{25}.
b. Type of cement: OPC 43 grade
c. Max. Nominal size of aggregates 20 mm down
d. Min. cement content : $300 \mathrm{~kg} / \mathrm{m}^{3}$
f. Workability : 75 mm slap
e. Water cement ratio : 0.50
h. Method of concrete placing : Manual
j. Chemical admixture : NIL
g. Exposure condition: Moderate (RCC)
i. Max. cement content: $450 \mathrm{~kg} / \mathrm{m}^{3}$
k. Fine aggregate zone : Zone 2.

A Cement: Type of cement $=$ OPC 43 grade
Specific gravity : 3.15

B Coarse Aggregate: Specific gravity : 2.80
Water absorption: 1%
Free surface moisture : NIL
C Fine Aggregate : Specific gravity : 2.65 Water absorption : 2%, Free surface moistureq 2%

D Chemical Admixture - NIL.
(20 Marks)

OR

8 Discuss the concept of mix design Write step by step procedure for mix design using IS code.
Also discuss the variables inproportioning of concrete.
(20 Marks)
Module-5
9 a. What are requirements of RMC according QCl? Briefly discuss advantages and disadvantages ofRMC.
(10 Marks)
b. What is Light weight concrete? Discuss the uses and advantages of Light weigh concrete.
(10 Marks)

10 a. Enumerate the benefits of self eomacting concrete. Explin any two test on self compacting concrete.
(10 Marks)
b. List the types of Fibres used in FRC and discuss Factors affecting promerties of FRC.
(10 Marks)

[^0]

Fourth Semester B.E. Degree Examination, 1 inipturby 2019 Basic Geotechnical Engineering

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. With the help of a three phase diagram explain
i) Void ratio
ii) Porosity
(ii) Water content
iv) Degree of saturation.
(08 Marks)
b. With usual notations, prove that $\mathrm{e}=\frac{\mathrm{WG}}{\mathrm{Sr}}$.
(06 Marks)
c. Determine the Dry densty $\frac{\text { Void ratio, Porosity and degree of saturation. Given }}{}$ $\gamma_{\mathrm{b}}=26 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{G}=2 \%$ and $\mathrm{W}=16 \%$.
(06 Marks)
OR
2 a. Define Liquid 1mpit, Plastic limit and Shrinkage limit.
(06 Marks)
b. Explain the andan Standard Soil classification system.
c. A fine gramed soil has a liquid limit of 54% and a plastic limit of 30%. Classify the soil as per IS elatsification.
(06 Marks)

Module-2

3 a. Explain with sketches, the common clay minerals
b. Following are the results of acompaction test.

Weight of seif with mould (N)	29.25	30.95	31.50	31.25	30.70
Water Conten $(\%)$	10	12	14.3	16.1	18.2

Plot the compaction curve showing MDD and OMC. Given $Q_{1}=2.70$,
Volume of moutd $1000 \mathrm{~cm}^{3}$. Weight of mould $=10 \mathrm{~N}$.
(12 Marks)

4 a. Explain Electrical Diffuse Double Layer.
b. Distinguis between Standard proctor and Modiffecproctor compaction tests.
c. For constructing an embanement, the soil is transported from a borrow area using a truck whioh can carry $6 \mathrm{~m}^{3}$ of teitnat a time. Determine the number of truck loads of soil required to gtain $100 \mathrm{~m}^{3}$ of compated earth fill and the volume of the borrow pit. Use the following

5 a. What is a Flow net? What ane the uses and characteristics of flow nets?
(08 Marks)
b. The porosity of a certanssample of sand was 50% in the loose state and 34% in the dense state. The specific gravity is 2.70 . Estimate the critical hydraulic gradients in loose and dense states.
(06 Marks)
c. Compute the gungty of water seeping under a weir per day for which the flow net has been satisfactorily constructed. The coefficient of permeability is $2 \times 10^{-2} \mathrm{~mm} / \mathrm{s}$.
$\mathrm{n}_{\mathrm{f}}=5$ and $\mathrm{n}_{\mathrm{d}}=18$. The difference in water level between upstream and downstream is 3.0 m . The leng of the weir is 60 m .
(06 Marks)

OR

6 a. With the help of neat sketches, derive an equation to determine permeability by the following Laboratory method and also state theinsuitability.
i) Constant Head Permeability Test
ii) Falling Itead Permeability Test
(14 Marks)
b. What are the factors affecting permeability? Explain them briefly.
(06 Marks)

Module-4

7 a. Explain with neat sketch, the mass springenalogy.
(08 Marks)
b. Explain normally consolidated soil and over consolidated soil.
c. The thickness of a normally consolidated clay layer is 3, The initial void ratio of the sample is 1.0 and its liquid limit 1560%. The overburdertpressure at the middle of the clay layer was $154 \mathrm{kN} / \mathrm{m}^{2}$. Due to construction of a building the increase in effective stress is $92.4 \mathrm{kN} / \mathrm{m}^{2}$. Determine the consolidation settlement of the clay layer.
(06 Marks)

OR

8 a. Explain with a sketelf determination of Pre - consolidation pressure by Casagrande's method.
(06 Marks)
b. Explain Square root of time fitting methed.
(06 Marks)
c. A 20 m thick isotropic clay stratum overlies an impervious rock. The coefficient of consolidation of soil is $5 \times 10^{-2} \mathrm{~mm}^{2 / s}$. Find the time required for 50% and 90% consofidation. Time factors are 0,2 and 0.85 for 50% and 90% consolidations respectively.

9 a. Explain Mohr - Coulomb fallure theory of soil.
(06 Marks)
b. What are the factors affecting the shear strentigth of soil?
(06 Marks)
c. In a shear test conducted on a river sand, the fellowing results were obtained.

Normal Force (N)	80	160	240	320	400	480
Shear Force (N)	80	101	149	201	248	302

(08 Marks)
Determine ' e ' and ' ϕ '.

10 a. With the help of neat sketches, derive an equation to determine shear strength by Vane shear test.
(08 Marks)
b. In a triaxial test on two identical soil samples the following data was obtained.

Compute shear parameters.
(12 Marks)

Fourth Semester B.E. Degree Examination, June/July 2019 Advanced Surveyling
Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE fultquestions, choosing
 ONE full question from each module.

Modtle-1

1 a. With the help of a neat sketch of a simple circular curve? Explain.
i) Tangent length
ii) Length of long chord
iii) Intersectionangle
iv) Point of curve
v) Point of tangency
vi) Deflectior angle.
(06 Marks)
b. Define degree of a curve. Establish the relationship between degree of a curve and its radius.
(04 Marks)
c. Two tangents intersectat at chainage $(59+60)$, the deflection angle being $50^{\circ} 30^{\prime}$. Calculate the necessary data forserting out a curve of 15 chyms radius to connect the two tangents, if it is inteneded to but the curve by Rankine's method of deflection angles. Take the peg interval equal to links, the length of the ghain being 20 m (100 links). Draw the curve table.
(10 Marks)

2 a. What is thation curve? List the function and essential requirements of an ideal transition curvern
(06 Marks)
b. Two straights BA and AC are intersected by a line E . The angle BEF and EFC are 130° and 140° respectively. The radius of the first arc 5500 m and that secong arc 300 m . Find the chainages of the tangent points and the points of compound curvature given that the chainage of the intersecton point ' A ' is 320 en .
(07 Marks)
c. Two parallel railway fines are to be connected by a reverse curve. Each section having the same radius. If he lines are 12 meters apart and the maximum distance between tangent points measured parallel to the straights is 48 meters, find the maximum allowable radius. If however, both the radii are to be different, calculate the radius of the second branch if that of the first branch is 60 meters. Also, catculate the lengths of both the branches.
(07 Marks)

Module- 2

3 a. List the various factors that are to be considefed in the selection of site for baseline and station in triangulation suryey.
(06 Marks)
bf Write a note on clastiffation of triangutation system.
(06 Marks)
c. From a satellite station ' S ' which is $14 \mathrm{~m}^{\text {' }} \mathrm{A}$ ', angles measured to 3 triangulations stations are as follows :
$\triangle \mathrm{CSA}=32^{\circ} 45^{4} 8^{\prime \prime}, \underline{\mathrm{BSC}}=68^{\circ} 26^{\circ} 30^{\circ}$ the length of sides, AC and AB are 5678 m and 1441 m respectively ${ }^{\text {In }}$ ind the angle of $B A C$.
(08 Marks)

OR

4 a. Explain the sources and seinds of errors.
(04 Marks)
b. State and explain law of weights.
(08 Marks)
c. Find the most promble values of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ from the following observation @ a station ' 0 '.
$A=9^{\circ} 48^{\prime} 36^{4}+42^{\circ}$
$\mathrm{B}=54^{\circ} 37^{\prime} 48^{\prime \prime} \omega \mathrm{th} 3$
$\mathrm{A}+\mathrm{B}=404^{\circ} 26^{\prime} 28^{\prime \prime} \operatorname{\omega t} 4$.
1 of 2
(08 Marks)

Module-3

5 a. Define the following terms:
i) Zenith
ii) Nadis
ii) Azimuth
iv) The altitude
v) Celestial sphere.
(05 Marks)
b. Mention the properties of a spherical triangle.
(05 Marks)
c. Find the shortest distance between two points A. A , given :

B latitude $-68^{\circ} 32^{\prime} \mathrm{N}$ longitude $126^{\circ}-54 \mathrm{E}$.
(10 Marks)

6 a. Define the following :
i) Latitude ii) Longitude iifothe visible Harizon iv) sensible Horizon.
(04 Marks)
b. Explain Ecliptic and solstices.
(06 Marks)
c. At a point ' A ' in latitude $45^{\circ} \mathrm{N}$, a straight line is ranged out which runs due east at A. This straight line is prolonged for 300 nautical miles 1 it 8 . find the latitude of B, and if it be desired to travel due north from B. So as to meet the 45° parallel again at ' C ', find the $A B C$ at which we must out and the distance BC.
(10 Marks)

Mothate-4

7 a. Define the terns :
i) Picture plane
ii) Camera axis
iii) Focal length
iv) Principal plane
v) Perspective projection vi) Film Base.
(06 Marks)
b. With a neat sketch, derive the expression for the scale a vertical photograph. (06 Marks)
c. A vertical photograph was taken at an altitude of 200 above MSL ${ }_{6}$ Determine the scale of the photograph for the terrain laying at elevatignof 80 m and 300 m . If te focal length of the camera is 15 cm .

8 a. Define the terms? 雪童) Drift ii) crab (iii) mosaics
b. Explain the procedure for aerial survey
(08 Marks)
c. The scale of an aerial photography is $1 \mathrm{~cm}=100 \mathrm{~m}$. The photograph size is $20 \mathrm{~cm} \times 20 \mathrm{~cm}$. determine the number of photography required ton cover an area $10 \mathrm{~km} \times 10 \mathrm{~km}$, if the longitudinal lap is 60% and side tap is 30%.
(04 Marks)
9 a. Define EDM.
1
(06 Marks)

6. Mention the advantages of total station and also discuss the working principles of the same.
(08 Marks)
c. Define remote sensing. Explain the applications in civil engineering.
(08 Marks)

10 a. What are the advantages of LIDAR technology?
(04 Marks)
b. What is GIS? With a neat sketch, explain the components of GIS.
(08 Marks)
c. What is GPS? Explain the basic principles of GPS and its application in surveying. $(08$ Marks)

15CV/CT51

Fifth Semester B.E. Degree Examination, June/July 2019 Design of RC Structural Elements

Time: 3 hrs.

Note: 1. Answer any FHE full questions, choosing ONE full question from each module.
 2. Use of 1 S456-2000 and SP-16 is permitted.
 3. Assume any missing data suitably.

Module-1

1 a. Explain the principles oflimit state design.
(06 Marks)
b. Enlist the reasons for adopting partial safety factors for loads and material strength.
(05 Marks)
c. Derive from the fiundanmentals the expression for the area of stress block $0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{u}}$.
(05 Marks)

OR

2 a. Explain short term deflection and long term deflection.
(06 Marks)
b. A simply supported RCC beam of size $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ earries a Udl live load of $25 \mathrm{kN} / \mathrm{m}$ and superimposed load [Dead load] $12 \mathrm{kN} / \mathrm{m}$ over an effective span of 5 m . It is reinforced with $4-\# 16 \mathrm{~mm}$ diameter bars. The effective cover is 50 mm . Calculate the short term deflection and long term deflection of beam, if i) Ultimate shrinkage coefficient $=0.0003$, ii) Creep co-efficient $=1.6$, cencrete grade M20, and steel Fe 415 are used.
(10 Marks)

Module-2

3 a. A singly reinforced concrete beam of $250 \mathrm{~mm} \times 450 \mathrm{~mm}$ deep upto the centre of reinforcement is remforced with $3 \# 16$ at an effective cover of 50 mm , effective span 6 m , M20 concrete and Fe415 steel. Determine the central point load that can be supported in addition to the self weight.
(10 Marks)
b. Determine the moment of resistance of a T-beam for the following data:

Breadth of the flange $=740 \mathrm{~mm}$,
Effective depth $=400 \mathrm{~mm}$,
Breadth of web $=240 \mathrm{~mm}$,
Area of steel $=5-20$ and
Depth of flange $=110 \mathrm{~mm}$,
Adopt M20 grade concrete and Fe415 steel.
(06 Marks)

OR

4 a. A doubly feinforced beam section is 250 mm wide and 450 mm deep upto the centre of the tensile reinforcement. It is reinforced with 2- $\phi 16$ as compression reinforcement at an effective cover of 50 mm and $4-\phi 25$ as tensile steel, using M20 concrete and Fe250 steel, calculate the ultimate moment of resistance of the beam section.
(09 Marks)
b. A Tee beam has the following data:
i) C/C spacing of beams $=3.20 \mathrm{mt}$,
ii) Simply supported efficiency span of (simply) beam $\Rightarrow 8 \mathrm{~m}$
iii) Depth of slab $=150 \mathrm{~mm}$
iv) Size of web of beam $=300 \mathrm{~mm} \times 500 \mathrm{~mm}$

Calculate the balanced moment of resistance.
(07 Marks)

Module-3

5 Design a reinforced concrete beam of rectangular cross-section using the following data: Effective span $=5 \mathrm{~m}$, width of beam $=250 \mathrm{~mm}$, overall depth $=500 \mathrm{~mm}$, service load including dead load and live load $=40 \mathrm{kN} / \mathrm{m}$, tension cover $=50 \mathrm{~mm}$. Adopt M20 grade concrete and $\mathrm{Fe}-415$ grade steel. Sketch the reinforcement details.
(16 Marks)

OR

a. List the circumstance under which doubly reinforced beam are recommended.
(04 Marks)
b. A rectangular beam $230 \mathrm{~mm} \times 550 \mathrm{~mm}$ deep is subjected to a sagging BM of 40 kNm , shear force of 30 kN and twisting moment of 11.5 kNm at a given section. Design the reinforcement if M20 grade concrete and Fe415 steel are used Sketch the details. (12 Marks)

Module-4

7 Design a R.C.C. slab for an office floor $4.5 \mathrm{~m} \times 5.5 \mathrm{~m}$ with all four edges discontinuous and corners held down. The live load on the slab is $3 \mathrm{kN} / \mathrm{m}^{2}$. Assume floor finish as $0.6 \mathrm{kN} / \mathrm{m}^{2}$ and ceiling finish as $0.4 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe415 steel. Sketch the reinforcement details.
(16 Marks)

OR

8 Design a Dog legged Stair for an office building in a room measuring $2.8 \mathrm{~m} \times 5.8 \mathrm{~m}$ clear vertical distance between the floors is 3.6 m . The width of flight is to be 1.25 m . Assume live load of $3 \mathrm{kN} / \mathrm{m}^{2}$. Use M-20 concrete and $\mathrm{Fe}-415$ grade steel. Assume that the stairs are supported on 230 mm at the outer edges of landing stairs. Sketch the reinforcement details.
(16 Marks)

Module-5

9 a. Design the reinforcement for a square column of size $450 \mathrm{~mm} \times 450 \mathrm{~mm}$ to support a service load of 1500 kN . Use M20 concrete and $\mathrm{Fe}-415$ steel.
(08 Marks)
b. A column size of $300 \mathrm{~mm} \times 400 \mathrm{~mm}$ has an effective length of 3.6 m and is subjected to $P_{u}=1100 \mathrm{kN}$ and $\mathrm{M}_{\mathrm{u}}=150 \mathrm{kNm}$, about the major axis. Assuming the bars on two sides, design the column using M25 concrete and Fe415 steel.
(08 Marks)

OR

10 Design an isolated footing of uniform thickness of a RC column, bearing a vertical load of 600 kN and having a base of size $500 \mathrm{~mm} \times 500 \mathrm{~mm}$. The safe bearing capacity of the soil may be taken as $120 \mathrm{kN} / \mathrm{m}^{2}$. Use M-20 grade concrete and Fe-415 grade steel. Sketch the reinforcement details.
(16 Marks)

Fifth Semester B.E. Degree Examinatigh, uneturty 2019 Analysis of Indeterminalystructures

Time: 3 hrs .

Max. Marks: 80
Note: Answer any FIVE full questions, cho siagone full question from each module.

1 a. Analyse the continuous beam shownin PigQ1(a) by slope deflectior method. Draw bending moment diagram. EI is constant.
(06 Marks)

Fig.Q1(a)
b. Analyse the portal fin shown in Fig.Q1(b) 保 che deflection method. Draw bending moment diagram
(10 Marks)

2 a. Analyse the coutimuous beam shown 1 Fig.Q2(a) by slopo deflection method. Support 'B'
sinks by 3 mp . Take $\mathrm{EI}=3000 \mathrm{kN}$ y . Draw bending nfoment diagram.
(06 Marks)

6. Analyse the porta1 ane shown in the Fige2(b) by slope deflection method. Draw bending moment diagram
(10 Marks)

Fig. Q2(b)

Module-2

3
a. Analyse the continuous beam using moment distribution then od. Draw bending moment and shear force diagram. Refer Fig.Q3(a).
(06 Marks)

Fig: 3 (a)
b. Analyse the portal frame shown in Fig (b) using moment disthation method. Draw bending moment diagram. Take EIS $=20 \mathrm{~N}_{\mathrm{m}} \mathrm{m}^{3}$.
a. A horize trarbeam is loaded as shown in Fig.Q4(a). It support ' A ' sinks by 10 mm and B by 30 mm and C by 20 mm . Deterring the end moments ie beam Given $\mathrm{I}=2.4 \times 10^{6} \mathrm{~mm}^{4}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(08 Marks)

b. Analyse the party frame shown inf cigev4(b) using meffent distribution method. Draw
(08 Marks)

a. Analyse the continuous berm shown in Fig.Q5(a) using Kani's method. Draw bending moment diagram.
(08 Marks)

b. Analyse the frame shown in Fig.Q5(b) using Kanji's nefood. Draw bending moment diagram.
(08 Marks)

Analyse the frame shown in F18Q6 by Kani's method Draw bending moment diagram.

(16 Marks)

7 a. Analyse the bean shown in Fig.Q7(a) flexibility method and draw bending moment diagram.

Fig.01(a)
b. Analyse the frame show t in Fig.Q7(b) $6 y$ flexibility method and draw bending moment - diagram.
(08 Marks)

8 Analyse the pin-jointed frame shown in Fig.Q8 by flexibilityamethod. The cross-sectional areas A and E for all members is the same.

Fig.Q8
(16 Marks)

9 a. Analyse the continugus sham shown in Fig. Q (a) by stiffness method. Draw bending moment diagram.
(08 Marks)

b. Analyse the portal frame shown in $\mathrm{Hg} . \mathrm{Q} 9$ (b) by stiffids method. Draw bending moment diagram?

10 Using stiff is method determine ye displacements at the joint ' B ' of a pin-jointed frame shown in Fig. Q10. Also calculate + terces in the members AB and BC due to given loading. The values of area of cross-sectioptre indicated. Ta $t=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig.Q10

15 CV 53
Fifth Semester B.E. Degree Examination, June/July 2019 Applied Geotechnical Engineering

Time: 3 hrs.
Max. Marks: 80
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of IS : 6403 is permitted.

Module- 1

1 a. Enumerate the objectives of subsurface exploration.
(04 Marks)
b. Explain with reference to soilsupplus: Area ratio, Inside clearance. Outside clearance and Recovery ratio.
(04 Marks)
c. Estimate the position of ground water table from the following data :

Depth upto which water 1 s boiled out is 32 m . Water raise in the first day: 2.4 m ,
Second day : 2.0 m and Third day : 1.6 m .
(08 Marks)

OR

2 a. Distinguish between undisturbed, disturbed and representative soil samples. What are the tests conducted on these samples in the laboratory?
(05 Marks)
b. Explain Seismic refraction method of soil exploration, with a neat sketch on its mechanism.
(06 Marks)
c. What is Bore hole \log ? List the information recorded in it.
(05 Marks)

Module-2.

3 a. What do you understand by "Pressure bulb'? Ilustrate with a sketch.
(05 Marks)
b. A circular area 6 m is diameter, carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}^{2}$. Plot the variation of vertical stress at depths $2 \mathrm{~m}, 4 \mathrm{~m}$ and 8 m .
(06 Marks)
c. Explain the principle of 'New - marks chart'.
(05 Marks)

OR

4 a. What are different types of settements of footings? Explain.
(04 Marks)
b. Estimate the immediate settlement of a footing of size $2 \mathrm{~m} \times 3 \mathrm{~m}$ resting at a depth of 1.5 m in sandy soil whose compression modulus is $10 \mathrm{~N} / \mathrm{mm}^{2}$. Footing is expected to transmit a unit pressure of $200 \mathrm{kN} / \mathrm{m}^{2}$. Poissen's ratio of soil is 0.3 and influence factor for footing is 1.06 .
(04 Marks)
a 4 saturated clay 8 m thick underlies a proposed new building. The existing overburden pressure at the centre of clay layer is $300 \mathrm{kN} / \mathrm{m}^{2}$ and load due to new building increases the pressure by $200 \mathrm{kN} / \mathrm{m}^{2}$. The liquid limit of soil is 75% with field water content $=50 \%$ and $\mathrm{G}_{\mathrm{S}}=2.7$. Estimate consolidation settlement.
(08 Marks)

Module-3

5 a. Explain step by step proeedure of Culmann's graphical construction for determination of Active pressure.
(04 Marks)
b. A 4.5 m high retaining wall retains a cohesive soil with $\mathrm{C}=10 \mathrm{kN} / \mathrm{m}^{2}, \phi=20^{\circ}$ and $\gamma=16 \mathrm{kN} / \mathrm{m}^{3}$. Calculate the depth of tension cracks and critical depth.
(04 Marks)
c. A retaining wall 6.6 m high retains a cohesionless soil whose properties are
$\phi=25^{\circ}, \mathrm{G}=2.6$ and $\mathrm{e}=0.6$. The water table is at n depth of 2.1 m below GL. Draw the earth pressure diagram and calculate magnitude and position of active earth pressure above the base of the wall.
(08 Marks)

OR

-

6 a. What are the causes of slope failure? List and enumerate the types of failures in finite slopes.
(03 Marks)
b. List and enumerate the types of failures in finite slopes.
(03 Marks)
c. An embankment 6 m high has a slope of $1 V 2 H$. The soil properties are $C=5 \mathrm{kN} / \mathrm{m}^{2}$, $\phi=30^{\circ}$ and $\gamma=19 \mathrm{kN} / \mathrm{m}^{3}$. A trial slip circle of radius 8.8 m and passing thro' the toe has its centre at the same level as the top of embaniment. Find the factor of safety by the 'method of slices'.
(10 Marks)

Module-4

7 a. Define Ultimate bearing capaeity, Safe bearing capacity and Allowable bearing pressure.
b. List the assumption made in Terzagh's b.c theory.
(03 Marks)
b. List 1.8 m , locted
c. Determine the safe bearing capacity of a square footing of side 1.8 m , located at a depth of 1.5 m below GL in a soil having $\gamma=16.2 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{C}=15 \mathrm{kN} / \mathrm{m}^{2}$ and $\phi=35^{\circ}$. Take $\mathrm{N}_{\mathrm{c}}=57.8$, $\mathrm{N}_{\mathrm{cl}}=41.1$ and $\mathrm{N}_{\mathrm{x}}=42.4$ with $\mathrm{FS}=3$. Assume water tank at great depth, what will be the SBC if WT rises to the base of footing.
(10 Marks)

OR

8 a. Explain the three modes of shear failure below the footing, with neat sketches.
(04 Marks)
b. Discuss the effect of size and shape on the bearing capacity of footing on :
i) Sand
ii) Clay.
(04 Marks)
c. Proportion a square footing to carry a load of 900 kN from a column $400 \times 400 \mathrm{~mm}$ in section and located at a depth of 1.5 m below GL. The soil has $C=0, \phi=36^{6}, 17.5 \mathrm{kN} / \mathrm{m}^{3}$ above water table and $\gamma_{\text {sat }}=20 \mathrm{KN} / \mathrm{cm}^{3}$ below water table(WT). The WT is at the base of the footing. Permissible settement is 25 mm , Corrected $\mathrm{N}-$ Value $=30$. Use a $\mathrm{FS}=2$.
[Use of IS : 6403 is permitted]. No structural design required,
(08 Marks)

Module-5

紋就:
9 a. Classify the pile foundations according to material and function, with neat figures. (04 Marks)
b. Explain in detail, the principle associated with determination of pile load capacity using static formula.
(04 Marks)
c. A 12 m long, 30 mm dia. pile is driven in uniform deposit of sand with $\phi=40^{\circ}$. The W.T is at great depth. The average dry unit weight of sand is $18 \mathrm{kN} / \mathrm{m}^{3}$. Using $\mathrm{Nq}=137$, calculate the safe lad capacity of single pile with a $F S=2.5$ and angle of wall friction $(\delta)=30^{\circ}$. (08 Marks)
$+$

10 a. What is meant by efficiency of pile groups? Discuss Feld's rule for its determination.
(04 Marks)
b. What is Negative friction? Under what situation negative skin friction occurs.
c. Calculate the safe load carrying capacity of a 16 pile group arranged in a square pattern with each pile is of 400 mm diameter, 9 m length and with a spacing of $1.2 \mathrm{~m} \mathrm{c} / \mathrm{c}$. The soil is 14 m deep clay with unconfined strength of $100 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{r}=16 \mathrm{kN} / \mathrm{m}^{3}$ and $\mathrm{r}^{1}=9 \mathrm{kN} / \mathrm{m}^{3}$ with adhesion factor $(\alpha)=0.7$. W.T is 1 m below GL. Use a FS $=2.5$.
(08 Marks)

Fifth Semester B.E. Degree Examination, June/July 2019 Railways, Habours, Tunneling and Airports

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Draw typical cross-section of permanent way. Discuss in brief the basic functions of various components of railway track.
(08 Marks)
b. Calculate maximum permissible speed on curve of high speed B.G. track having following particulars:
(i) Degree of curve $=1$ 응
(ii) Amount of superelevation $=8.0 \mathrm{~cm}$
(iii) Length of transitioncurve $=130 \mathrm{~m}$
(iv) Max. speed of fection likely to be sanctioned is 150 kmph .
(08 Marks)

OR

2 a. Explain : (i) Coning of wheel (ii) Creep in rails
(08 Marks)
b. Calculate all necessary elements required to set out a 1 in $81 / 2$ turnout, taking off from straight B.6. track with its curve starting from toe of the switch i.e., tangential to the gauge face of outer main rail and passes through theoretical nose of crossing i.e, TNC. Given heel divergence $\mathrm{d}=11.4 \mathrm{~cm}$.
(08 Marks)

Module- 2

3 a. List the modern surveying techniques that can be utilized for preliminary survey of railway line for difficult terrain. Explain any two techniques.
(06 Marks)
b. Explain tier system of track maintenance.
(10 Marks)

4 a. What are the advantages and limitations of underground railways?
(08 Marks)
b. For a rail of 11.89 m length, catculate the quantity of materials required per km . Length of track. Assume sleeper density to be equal to $(1.0936 n+4)$.
(08 Marks)

Module- 3

5 at Explain various shapes of tunnels with neat sketches.
(04 Marks)
b. Explain with neat sketches the natural classification of harbours.
(06 Marks)
c. Mention objects of tunnel lining. List materials used for lining.
(06 Marks)

OR

6 a. List methods of tunneling in hatrd rock. Explain any one method.
(06 Marks)
b. Explain the natural phenomena considered in the design of harbour.
(06 Marks)
c. What is importance of tumel ventilation? Explain methods adopted for ventilation.
(04 Marks)

Module-4

7 a. Write a brief note on "Airport classifications".
(08 Marks)
b. Explain factors which influence the airport site selection.
(08 Marks)

OR

8 a. What is "Regional planning"? What information will regional plan provide? List various data to be collected for scientific and sound regional plan.
(08 Marks)
b. Write short note on :
(i) Holding apron
(ii) Imaginary surfaces.
(08 Marks)

Module-5

9 a. What is wind rose diagram? Explain briefly with a neat sketch any one method of orientation of runway.
(06 Marks)
b. Calculate actual length of runway from following data:
(i) Airport elevation = R.L. 105 m
(ii) Airport reference temperature $=30^{\circ} \mathrm{C}$
(iii) Runway basic length $=1200 \mathrm{~m}$
(iv) Highest point along length $=$ R.L. 107 m
(v) Lowest point along lêngth $=$ R.L. 101 m .
(10 Marks)

10 a. Explain the following:
OR
(i) Airport marking
(ii) Airport lighting
(08 Marks)
b. Explain princíples adopted in design of an exit taxiway connecting runway and a parallel taxiway. On a neat typical layout, indicate various designelements.
(08 Marks)

CBCS SGHIEME

USN

Fifth Semester B.E. Degree Examination, June/July 2019
Masonry Structures
Time: 3 hrs .
Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Useof IS 1905-1987 is permitted.

Module-1

1 a. Classify bricks and list the qualities of good bricks.
(08 Marks)
b. Derive an expression for brick prism under compression by elastic theory.
(08 Marks)
a. What are the desirable properties of mortar for use in masoary construction? Explain.
b. Explain briefly factors affecting compression strength of masonry.
(08 Marks)
(08 Marks)

3 a. Define wall. List different types of walls with neat sketches.
(08 Marks)
b. Explain the effect of eccentricity, load dispersion and arching action in masonry. (08 Marks)

OR

4 a. Explain briefly stress reduction factor, shape modification factor and increase in permissible stress for eccentric loads.
(08 Marks)
b. An interior solid wall of a two storey building is 200 mm thick with a ceiling height of 4 m , it
is constructed with bricks of $10 \mathrm{~N} / \mathrm{mm}^{2}$ and M_{1} type mortar, the wall is fully restrained at top and bottom. Solve for permissible compressive stress.
(08 Marks)

Module-3

5 a. Explain the design criteriae of masonry wall subjected to axial load.
(06 Marks)
b. Design an interior cross wall of a two storeyed building with 100 mm thick RCC slab and 3 m ceiling height. The wâll is unstiffened and it supports 2.65 m slab on either side take live load on roof as $1.5 \mathrm{kN} / \mathrm{m}^{2}$, live load on floor as $2 \mathrm{kN} / \mathrm{m}^{2}$. Assume floor finish as $0.2 \mathrm{kN} / \mathrm{m}^{2}$, thickness of limeterrace as 80 mm and thickness of wall as 100 mm .
(10 Marks)

1 of 2

6 a. Design an interior solid wall for a two storeyed building. The wall is 3.6 m long and stiffened at the ends by 100 mm thick intersecting walls. The ceiling height of each floor is 3 m . Assume thickness of wall as 200 mm . Take total load on wall as 100 kN including self weight.
(06 Marks)
b. Design a interior cavity wall for a three storey building. The ceiling height of each storye being 3 m . The wall is stiffened by intersecting walls at 3600 mm center to center. The thickness of intersecting wall is 200 mm Assume roof load as 16 kNm and floor load as $12.5 \mathrm{kN} / \mathrm{m}$. Refer the Fig.Q6(b).
(10 Marks)

7 a. Explain the design criteria for eccentrically loaded walls. at
(06 Marks)
b. Design an exterior wall for a workshop building which is 3.6 m height and carrier a steel truss at the top at 4.5 m spacing. The wall is tied at roof and floor level. Take concentrated reaction from roof truss as 30 kN , roof load as $2 \mathrm{kN} / \mathrm{m}$ and thickness of wall as 200 mm . Assume width a thickness of pier as 200 mm and 400 mm respectively.
(10 Marks)

OR

8 a. What is equivalent eccentricity? Explain stress distribution under eccentric loads with neat sketch.
(06 Marks)
b. Design an external wall of a single soreyed building whose inner leaf supports an eccentric load 7 kN at an eccentricity of 25 mm . The wall is unstiffened and is supported by a concrete roof at the top and rests on foundation block at bottom. Take the height of wall as 4 m and overall thickness of cavity wall as 250 mm with 50 mm cavity in between.
(10 Marks)

Module-5

9 a. Discuss the design principles of walls subjected to transverse load.
(06 Marks)
b. Design an exterior wall of warehouse 3.5 m height the loading on wall consists of vertical load $25 \mathrm{kN} / \mathrm{m}$ from the roof ant wind a pressure of $360 \mathrm{~N} / \mathrm{m}^{2}$. The wall is hinged with the metal anchor at floor and roof level take thickness of wall as 200 mm .
(10 Marks)

OR

10 a. What are infilled frames? Explain different modes of failures in infilled frames.
(08 Marks)
b. Write a short note on :
i) Reinforced brick masonry
ii) Lintels.
(08 Marks)

Fifth Semester B.E. Degree Examination, Jungeivity 2019 Traffic Engineering

Time: 3 hrs .

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the interdependency of land use and transport" with a diagram.
(10 Marks)
b. Discuss briefly the PIEV theory.
(06 Marks)

OR

2 a. Describe the fundamentals of traffic flow.
(06 Marks)
b. A passenger car weighing 3 tonnes is required to accelerate at a rate of $3 \mathrm{~m} / \mathrm{sec}^{2}$ in the first gear from 9 speed of 10 kmph to 25 kmph . The gradient is $+1 \%$ and road has a black topped surface. The frontal projection are of the car is $2 \mathrm{~m}^{2}$. The car tyres have radius of 0.33 m . The rear axle gear ratio is $3.82: 1$ and the first gear ratio is $2.78: 1$. Calculate the speed of the engine The radius and deformation factor for tyres is 0.36 and 0.95 respectively. Assume transmission efficiency as 0.88 and $\mathrm{f}=0.02, \mathrm{c}_{\mathrm{a}}=0.39$.
(10 Marks)

Module- 2

3 a. Explain the different types of classified volume survey presentation.
(06 Marks)
b. Two vehicles A and B approaching at right angles, A from west and b from south, collide with each other After collision, vehicle 'A' skids in a direction $50^{\circ} \mathrm{N}$ of west and vehicle ' B ' $60^{\circ} \mathrm{E}$ of north. The initial skid distances of vehicles ' A ' and ' B ' are 38 m and 20 m respectively before collision. The skid distance after collision are 15 m and 36 m respectively. If the weights f vehicles ' A ' and ' B ' are 4.0 and 6.0 T . Calculate the original speeds of vehicle Assume $\mathrm{f}=0.55$.
(10 Marks)

OR

4 a Explain concept of Level Of Service (LOS) and its applications.
(06 Marks)
b. The table Q4(b) below gives the consolidated data of spot speed studies on a section of a road. Determine i) the upper and lower values or speed limits for installing speed regulations if) modal speed for the range.
Table Q4(b) : Speed Studies

Speed range kmph	Number of speed observations	Speed range kmph	Number of speed observations
$0-10$	0	$50-60$	216
$10-20$	11	$60-70$	68
$20-30$	30	$70-80$	24
$30-40$	105	$80-90$	0
$40-50$	233		

(10 Marks)

1 of 2

Module-3

5 a. At a right tangled intersection of two roads, road 1 has four lanes and road 2 has two lanes with a width of 12 m and 6.6 m respectively. The volume of traffic approaching the intersection during design hour are 900 and $743 \mathrm{PCU} / \mathrm{hr}$ on the two approaches of road2. design the signal timings as per IRC.
b. Explain the significant roles of traffic control personnel.
(12 Marks)
(04 Marks)

OR

6 a. Explain the three types of traffic sings with 3 examples for each with diagrams.
(10 Marks)
b. Explain the design factors to be considered for design of rotary intersection.

Module-4

7 a. Describe the causes of road accidents and also suggest preventive measures to control accidents.
(08 Marks)
b. Describe the various environmental hazards due to traffic in urban areas.
(08 Marks)

OR

8 a. Explain the arrangement of street lighting in urban areas and show the lighting arrangement sketch for signalized and rotary intersections.
(08 Marks)
b. Explain the importance and promotion of non motorized transport.

Module- 5

9 a. Explain the various method of traffic segregation.
(08 Marks)
b. Explain the concept of area traffic management system control (ATC) with an example.
(08 Marks)

OR

10 a. Explain applications of Intelligent Transport System (ITS).
(08 Marks)
b. Explain parking pricing and congestion pricing methods to control traffic management.
(08 Marks)

$$
\text { allaboutciziof } 2 \text { ngg. com }
$$

Fifth Semester B.E. Degree Examinatibn, June/July 2019 Occupational Health and Safety

Time: $\mathbf{3} \mathrm{hrs}$.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Outline the circumstances that led to development of OSHA and state the mission and purpose of OSHA.
(09 Marks)
b. Discuss in detail the two important responsibility of employercording to OSHA.
(07 Marks)
OR
2 a. Enumerate the axioms Industrial Safety.
(08 Marks)
b. Briefly explain the Dominos theory of accident causation.
(08 Marks)

Module-2

3 a. Describe the OSHA's Ergonomic Guidelines
(10 Marks)
b. Brief out the NSC's Recommendations foriconducting a Task Analysis.
(06 Marks)

4 a. Define Hazard". Explain the ElA with an example.
(10 Marks)
b. Discuss the various hazard deterrence methods.
(06 Marks)

Module- 1

5 a. Classify the types of fireand enumerate the early fire detection devices used.
(06 Marks)
b. Name different types of fire extinguishersused and explain any two with sketches. (10 Marks)

6 a. Describe the importance of Electrical Safety.

(04 Marks)
b. Summarize the technical requirements of Product Safety Programme.
(12 Marks)

7 a. Write the classification of Repeated Strain Injury and types of disorder associated with it.
(06 Marks)
b. Auggest the measures adopted to control the risk of occupational health.
(10 Marks)

8 a. Explain the importance of PPE's at workplace.
(06 Marks)
b. briefly discuspabout the EMP fot safety.
(10 Marks)

Module-5

9 a. Explain the health and safy aspects to be considered in waste water treatment plants.
(10 Marks)
b. Summarize the potential hazards posed for workers at construction sites.

OR
10 a. Discuss the oecupational health hazard posed in an epoxy manufacturing unit.
(06 Marks)
b. Comment on the Roles and Responsibilities of workers and managers in Safety programs.
(10 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

15CV61

Sixth Semester B.E. Degree Examination, June/July 2019 Construction Management and Entrepreneurship

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
1 a. What are the characteristics of Management and explain any two characteristics of Management?
(08 Marks)
b. Explain the advantages and disadvantages of Planning.
(08 Marks)

2 a. Explain the purpose of planning process.
(08 Marks)
b. Explain the Critical Path Method (CPM).
(08 Marks)

3 a. What are the factors affecting the productivity?
(08 Marks)
b. Explain the function of Materials Management.

4 a. What are the advantages of utilizing the construction equipments?
(08 Marks)
b. List out the various classification of the construction equipment and explain any one type of construction equipment.
(08 Marks)
Module- 3
5 a. Define Inspection and explain the types of inspection.
(08 Marks)
b. Explain Integrity and trust worthiness.
(08 Marks)

6 a. Define Quality and what are the dimensions of quality.
(08 Marks)
b. Differentiate between Moral the Ethics.
(08 Marks)

Module-4

7 a. Explain the principles of Engineering Economy.
(08 Marks)
b. Differentiate between Micro and Macro Economics.
(08 Marks)
8 a- Determine the effective interest rate for a nominal annual rate of 8% that is compounded.
i) Daily
ii) Monthly
iii) Quarterly
iv) Semi Annually.
(08 Marks)
b. A person estimates an expenditure of Rs 10 lakh for her daughters medical college from now. He plans to deposit an equal amount at the end of every year for next 10 years at a rate of interest 8% compounded annually. Find the equivalent amount that must be deposited at the end of every year for next 8 years.
(08 Marks)

9 a. What are the function of Entrepreneurship?
(08 Marks)
b. List out the various objectives and functional activities of Karnataka State Finance Corporation.
(08 Marks)

OR

10 a. What are the Barriers to Entrepreneurship?
(08 Marks)
b. Explain the characteristics or importance of market plan.
(08 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

Sixth Semester B.E. Degree Examinafoy, June/July 2019 Design of Steel Structurd Elements

Time: 3 hrs.

Note: 1. Answer any FIVE fit questions, choosing ONE full quety

2. Use of IS: geg 2007 and steel tablys xe permitted. pdule-1
1 a. What are the advantages and disanantages of using steel stracture?
(05 marks)
b. Explain briefly limit state metheof design of structure. Menton the limit states. (05 marks)
c. What are rolled used steqtections? Mention differentytypes of RS sections used in constructions.
(06 Marks)

OR
2 a. Explain the terms iplastic hinge ii) collapse méchanism.
(03 marks)
b. Find the shape fact and plastic moment capacity for a built up beam section shown in fig. Q2(b).

c. Determine the plastic moment capacity (v) for the beap (caded as shown in Fig. Q2(c). Use load factort $8^{2} 0$.

Fig.Q2(c)

Modivile-2
3 a. Explain various thes of failure of boffed connections.
(06 Marks)
b. Mention any advantages and dngedvantages of HSFG Bolts.
(04 Marks)
c. An ISA $10 \operatorname{nn} \times 100 \mathrm{~mm} \times 10 \mathrm{~min}$ carries a load of 100 kN . It is to be joined with a 12 mm thick gusset plate. Design the joint using HSFG bolts of 16 mm diameter and grade 8.8 , when i) no slip is permitted ii) , ing permitted. Steel is of grade Fe410.
(06 Marks)

OR

4 a. What are common detcts in welding? Explain briefly with neat sketches.
(06 Marks)
b. A tie member of toof truss consists of 2 ISA $100 \times 75 \times 8 \mathrm{~mm}$ and are connected to both the sides of 10 mu . Design the welded joint by providing weld i) along two parallel sides of angle ii) along all 3 sides of connected angle. Assume shop weld.
(10 Marks)

5 a. Explain the possible modes of failure of axially loaded colimons.
(03 Marks)
b. A double angle discontinuous strut ISA $150 \times 75 \times 0 \mathrm{~mm}$, long leg back to back is connected to either side of 10 mm gusset plate by 2 bolts in a row. The length of strut between point of intersection is 3.5 m and are taekoited all along the length. Determine the safe load that the strut can carry.
(05 Marks)
c. A built up column consists of ISMB $250 @ 366 \mathrm{~m}$ with two side plates $250 \mathrm{~mm} \times 10 \mathrm{~mm}$ as shown in Fig.Q5(c). Compute the maximpigcompressive load that the golumn can carry, if the length of the column is 6.25 m en S columns are restrainedin position at both the ends, and one end is restrained againgt rotation.
(08 Marks)

6 Designa milt up column comprishgof two channel sectan placed back to back to carry a load of 1000 kN over a length 40 m . The ends of cempression member are restrained in position but not in direction/rotation. Design single rachg system also with 20 mm diameter bolts for connections.

Fig.Q5(c)
(16 Marks)

7 a. What are lug angles?Briefly explain adeadtages and disadyantages of using lug angles in bolted comections.
b. Design an unefual single angle secform to carry a load $0 \mathrm{~F} / 40 \mathrm{kN}$ in tension. Use M20, 4.6 grade bolts. The length of the nemer is 3 m .
(10 Marks)

8 a. Distindurn between slab base nd gusseted base.

b. Design gusseted base fo \& built up column $5 \mathrm{SHB} 350 @ 674 \mathrm{~N} / \mathrm{m}$ with $400 \mathrm{~mm} \times 20 \mathrm{~mm}$ flange plates carrying an wrial load of 20 kN. Assume M_{20} grade concrete and M_{24} bolts of grade 4.6. SBC $-200 \mathrm{KN} / \mathrm{M}^{2}$.
(13 Marks)

Mbdule-5

9 a. Briefly explatione factors affecting ateral stability of beams.
(04 Marks)
b. Design one of the internal beaktif span 6 m (clear), spaced in the hall at $3.5 \mathrm{~m} \mathrm{c} / \mathrm{c}$, supports 130 mm thick $R C C$ slab. Take imposed load of $5 \mathrm{kN} / \mathrm{m}^{2}$ and finishes $1.5 \mathrm{kN} / \mathrm{m}^{2}$. Bearing of wall 300 mm . The beame is, laterally restrained. Check for shear, moment capacity and deflection.
(12 Marks)

10 a. Write a note on, Gaterally unsupported beam.
(04 Marks)
b. Briefly explaindifierent types of seated connections.
(05 Marks)
c. Explain the needsities of providing column splices. With neat sketches write about any two types of column splices.
(07 Marks)

$$
* * * 2 \text { of } 2
$$

15CV63

Sixth Semester B.E. Degree Examination, June/July 2019 Highway Engineering

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Mention different modes of transportation. Explain the characteristics of road transport in comparison with other systems.
(08 Marks)
b. Determine the length of different categories of roads in a state in India by the year 2021 as per $3^{\text {rd }}$ year road plan formulae. The area of state is $3,08,000 \mathrm{~km}^{2}$. Number of Towns as per 1981 census was 276 . Overall road density aimed at 82 km per $100 \mathrm{~km}^{2}$.
(08 Marks)

2 a. What are the types of roads and its classification? Briefly outline classification or urban roads.
(08 Marks)
b. Three new roads A, B and C are to be completed in a distriet during a five year plan period. Workout the order of priority for phasing the plan programme by maximum utility principle, from the data given below. Adopt utility unit of 1.0 for serving a village with population range 2000-5000, for catering for 1000 T of agricultural products or per 100 T of industrial products. Assume any other tequired data suitably.

Road	Length km	Number of village served population		Productivity 1000T		
		<2000	$2000-5000$	>5000	Agricultural	Industrial
A	15	10	8	3	15	1.2
B	12	16	3	3	1	11
C	18	20	10	2	0.0	

Module-2

3 a. Clarify the features of ideal alignment and enumerate factors affecting alignment. (08 Marks)
b. Write a brief outline on engineering surveys.
(08 Marks)

4 a. With neat sketches jhus irate different cross section elements.
(08 Marks)
b. The speed of overtaking and overtaken vehicles are 70 and 40 kmph respectively on a two way traffic road. If the acceleration of overtaking vehicle is $0.99 \mathrm{~m} / \mathrm{sec}^{2}$.
i) Calculate safe overtaking sight distance.
ii) Mention the minimum length of overtaking zone
iii) Draw a neat sketch of the overtaking zone and show the positions of the sign posts.
(08 Marks)

Module-3

5 a. With neat sketches illustrate conduction of plate load test to determine modulus of subgrade reaction.
b. Distinguish between :
(08 Marks)
i) Tar and Bitumen
ii) Cutback and Emulsion.

OR

6
a. Enumerate different types of pavements with their component parts and functions of each component.
(08 Marks)
b. Calculate ESWL of a dual wheel assembly caryying 2004 kg each for pavement thickness of 15,20 and 25 cms . Centre to centre tyre spacing $=27 \mathrm{~cm}$ and distance between the walls of the tyres $=11 \mathrm{~cm}$. Use graphical method.
(08 Marks)

Medule-4

7 a. Briefly outline the design procedure of soil aggregate mixes by Rothfuch's method.
b. Explain the procedure of marshall mix design of Bituminous mixes.

8 a. Enumerate in detail the requirements, specifications of naterials and the construction steps for a wet mix macadan (WMM) layer.
(08 Marks)
b. Explain in detail the requirements, specifications of materials and the construction steps for pavement qualityconcrete.
(08 Marks)

Module- 5

9 a. Explain with sketches how the subsurface drainage system is provided to lower the water table.
(08 Marks)
b. The maximum quantity of water expected in one of the open longitudinal drains on clayey soil is $0.9 \mathrm{~m}^{3} / \mathrm{sec}$. Design the cross section and longtudinal slope of trapezoidal drain assuming the bottom width of the trapezoidal section to be 1.0 m and gross slope to be 1.0 vertical to 1.5 horizontal. The allowable velocity of flow in the dran is $1.2 \mathrm{~m} / \mathrm{sec}$ and $\mathrm{n}=0.02$.
(08 Marks)
OR
10 a. Briefly describe the different methods of economic analysis of a highway.
(08 Marks)
b. Calculate the annual cost of a stretch of a highway from the following particulars:

Item 2	Total cost (ks. in lakh)	Estimated life (years)	Rate of interest (\%)
Land	12	100	6
Earthwork	9.0	40	8
Bridges and culverts	7.5	60	8
Pavement	14	15	10

(08 Marks)
\square

Sixth Semester B.E. Degree Examination, June/July 2019 Water Supply and Treatment Engineering

Time: 3 hrs.
Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Assume suitable data wherever necessary.

Module- 1

1 a. Explain the importance and need for protected water supply:
(06 Marks)
b. Enumerate the fire demand in water supply.
(03 Marks)
c. The population of a city in three consecutive years i.e. 1991,2001 and 2011 in 80,000 , $2,50,000$ and $4,80,000$ respectively. Determine: (i) The saturation population (ii) The equation of logistic curve (iii) The expecfed population in 2021.
(07 Marks)
(02 Marks)
2 a. What is meant byiper capita demand?
OR
b. Explain geometrical and incremental increase method of population forecasting.
(07 Marks)
c. The foleuving population data are available for a town. Estimate the probable population in the year 2031 by geometrical and ineremental increase methods:

Year	1971	1981	1991	2001
Population	80,000	$1,20,000$	$1,68,000$	$2,28,000$

(07 Marks)

(06 Marks)
3 a. Explain the objectives of water treatment:
(03 Marks)
b. List the physical water quality characteristics.
(07 Marks)
c. Discuss the complete sequence of watertreatment plant with a flow diagram.

OR

4 a. What are the objectives of water quality management?
(05 Marks)
b. Discusthe effect of excess concentration of hardness, nitrogen and fluoride in drinking water.
(06 Marks)
c. Explain the importance of bacteriological tests in determining the quality of drinking water.

(05 Marks)

Module-3

5 a. Define surface fow rate and detention period for a sedimentation tank.
(04 Marks)
b. Describe briefly the various constituents of coagulation sedimentation tank.
(06 Marks)
c. A rectangular settling tank without mechanical equipment is to treat 1.8 MLD of raw water. The sedimentation period is to be 4 h , the velocity of flow is $8 \mathrm{~cm} / \mathrm{min}$, and the depth of the water and sediment is 4.2 m . If an allowance of 1.2 m for sediment is made, what should be (i) the length of the basin (ii) the width of the basin?
(06 Marks)

OR

6 a. Explain with ancat sketch the working and back washing of rapid gravity sand filter.
(10 Marks)
Tof 2
b. Find the area and number of units required for rapid sand filtration to serve a population of $2,00,000$. Take average rate of demand $=160 \mathrm{lpcd}$ and manum demand as 1.8 times.
Rate of filtration $=5 \mathrm{~m}^{3} / \mathrm{h} / \mathrm{m}^{2}$
Size of each filter $=10 \mathrm{~m} \times 5 \mathrm{~m}$
(06 Marks)

Module 4

7 a. List the requirement of good disinfectant.
(03 Marks)
b. Explain the theory of chlorination of water with chemical equations,
(08 Marks)
c. Enumerate the treatment of swimming water.

OR
(05 Marks)

8 a. What is softening of water? Disewss the lime soda process of water softening with chemical equations.
b. Explain the reverse osmosis prycess of softening of water.
(10 Marks)

9 a. Discuss the factors governing the selection of source of water for water supply scheme.
b. Explain with aneat sketch a wet intake tower structure.
(04 Marks)
c. For water supply of a town, water is pumped from a river 3 km away into a reservoir. The maximum difference of levels of water in river and the reservoir is 20 m . The population of the town is 50000 and per capita demand is $120 \mathrm{c} / \mathrm{d}$. If pumps are to operate for a total of 8 hr and the efficiency of pumps ist 80%, determine the Gorse power of the pumps. Assume average daily demand as 1.5 times the average, $\mathrm{f}^{\prime}=0.03 \mathrm{a}$ and $\mathrm{v}=2 \mathrm{~m} / \mathrm{sec}$.
(06 Marks)

OR

10 a. Discuss the various methods of distribution of water and gwe the advantages and disadvantages of any two systems. (08 Marks)
(08 Marks)

CBCS SCHIENTE

USN

15CV651

Sixth Semester B.E. Degree Examination, June/July 2019 Solid Waste Management

Time: 3 hrs .

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the different sources and types of solid wastes.
(06 Marks)
b. Estimate the density of a solid waste sample, on as discarded basis. Take 1000 kg sample.
(10 Marks)

	Component	\% by mass.	Density ($\mathrm{kg} / \mathrm{m}^{3}$)
	Foodwaste	20	\% 300
	Saper	40 令	100
	Ptastics	5	90
	Garden trimmings	. 15	150
	Wood	5	250
	Tin cans	5	100
	Cardboard	10	- 80

2 a. With a neat sketch, explain hauled container system and stationary container system.
(10 Marks)
b. With a neat sketch, explain the different types ofTransfer stations.
(06 Marks)

Modйle-2

3 a. Explain the process of incineration with the aid of neat sketch.
(08 Marks)
b. Explain the following:
i) Mechanical volume reduction
ii) Component separation.
(08 Marks)

4 a. Describe the effect of $3 \mathrm{~T}^{*}$ s in incineration process of solid waste.
(08 Marks)
b. Write a note on Air pollution and its control.
(08 Marks)

Module-3

5 a. What are the impoitant factors for the design consideration in Anaerobic composting?
(06 Marks)
b. Write a note on Vermi composting.
(04 Marks)
c. Determine the amounts of oxygen required to oxidize 1 tonne of waste and also to stabilize

Ammonia in having the chemical equation $\mathrm{C}_{50} \mathrm{H}_{100} \mathrm{O}_{40} \mathrm{~N}$.
(06 Marks)

OR

6 a. Determine the landfill ârea required for municipality with a population of 50,000 given that Solid waste generâtion $=350 \mathrm{gm} /$ person $/$ day ; Compacted density of landfill $=504 \mathrm{~kg} / \mathrm{m}^{3}$; Average depth ofeompacted solid waste $=3 \mathrm{~m}$.
(04 Marks)
b. What is Leachate? What are its effects on ground water?
c. List and explain briefly the various factors that must be considered in evaluating a potential landfill site
(08 Marks)

$$
1 \text { of } 2
$$

Module-4

7 a. Explain the Bio - medical waste disposal methods.
(08 Marks)
b. List the various sources of e-waste, hazardous and construction waste.
(08 Marks)

8 a. Explain the categories of hazardous waste and its method of disposâl.
(08 Marks)
b. Discuss about collection, treatment and disposal of constructiongaste.
(08 Marks)

9 a. Describe about the various types of incinerations.
(08 Marks)
b. Write short notes on :
i) Energy recovery operation
ii) Significance ofreuse in solid waste.
(08 Marks)

10 a. Define Pyrolysis, Briefly explain the process of pyrolysis.
(08 Marks)
b. Explain the design criteria for incineration.
(08 Marks)

Sixth Semester B.E. Degree Examination, June/July 2019 Matrix Methods of Structural Analysis

Time: 3 hrs.
Max. Marks: 80
Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1
a. Define: (i) Degree of Redundathey (ii) Degree of Freedom
(iii) Flexibility
(iv) Stiffness
(08 Marks)
b. Assemble the stiffness matixix of the beam element shown in the figure with respect to the given co-ordinates. Refer Fig.Q1(b).
(08 Marks)

2 a. Determine the degrees of static and kinematic indeterminacy of the structures shown in the Fig. Q2(a).
(ii)

(06 Marks)

b. Develop the flexibility and stiffness matrices for the beam element shown in Fig.Q2(b) with respect te the given co-ordinates and show that flexibility and stiffness are inverse to each other,
(10 Marks)

3 Analyse the ontinuous beam shown in the Fig.Q3 by element flexibility matrix method. Draw BMD and elastic curve.
(16 Marks)

Fig.Q3 of 3

OR
4 a. Analyse the rigid frame shown in Fig.Q4 by force transformation method.
(16 Marks)

Module-3

5 Analyse the continuous beam by displacement transformation method. Draw BMD, SFD and elastic curve. Refer Fige Q5.
(16 Marks)

OR
6 Determine the support moments for the rigid frame shown in the Fig.Q6. Use element stiffness matrix method. Draw BMD and elastic curve El is constant.
(16 Marks)

7 A triangular plane truss shown in Fig.Q7, has cross sectional area of $3500 \mathrm{~mm}^{2}$ for all the members. The menber AB was found to be5 mm shorter than the correct length at the time of assembling. Find the forces in all the members, if the member $A B$ is forced in position. Use force transformation method. Take member AB as redundant. Take $\mathrm{E}=210 \mathrm{GPa}$.

Fig.Q7
(16 Marks)

OR

8 The top and bottom surfaces of the continuous beamshown in the Fig.Q8 are heated to $20^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$, respectively. Determine the final support moments using element stiffness method. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=1.2 \times 10^{-5} \mathrm{C}$. The depths of members AB and BC are 400 mm and 200 mm respectively.
(16 Marks)

Fig.Q8

Modules

Fig.Q9
OR
10 Determine the forces in all the members of the plane truss shown in the Fig.Q10 by direct stiffness method. AE is constant.
(16 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

Sixth Semester B.E. Degree Examingtion, June/July 2019 Alternative Building Waterials

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choging ONE full question

Module-1

1 a. Explain the need for alternate builoug materials.
b. Discuss about green building mepts.

OR
2 a. Explain about Rainwate Explain any two.
ised environment friend

(06 Marks)
(10 Marks)

4 a. List out the requirements of mortar.
b. What are the factors affecting compressive streteths of the masonf
(04 Marks)
(04 Marks) brick masonry prism made up of 5 joised by morms 20 mm . The brick is 75 mm in thickness. The prism is weted to a uniform vertical stress of $4.0 \mathrm{~N} / \mathrm{mm}^{2}$. The brick has medulus of $500 \mathrm{~N} / \mathrm{mm}$ and mortar mas modus of $8000 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the int lateral stressititick and mortar. Take $\mu_{\mathrm{b}}=0.1$ and $\mu_{\mathrm{m}}=0.15$.
(08 Marks)

5 a. Disctustor different source of lime stones.
(04 Marks)
b. Name the different types of pozzolana materials. Explain any two in detail.
(08 Marks)
c. What is mean by GFRP? Wst the fibre reinforeng materials.
(04 Marks)

6 a. List the agro wast and mention applications in building construction.
(08 Marks)
b. What are the syrces of industrigi wastes?
(04 Marks)
c. Write shof grt on construction demolition wastes. Mention its merits and demerits.
(04 Marks)

Module-4

7 a. Explain any two alternatioes for wall construction with neat sketches.
(08 Marks)
b. What is meant by ferrocement? List the materials used for ferrocement and mention the application of fertyè̀ment.
(08 Marks)

OR

8 a. Write the concepts of filler slab method and explairaty two methods in detail.
(08 Marks)
b. Write short notes on:
(i) Composite beam and panel roofs
(03 Marks)
(ii) Construction of masonry domes and vaultsh
(05 Marks)
(08 Marks)
(08 Marks)
(08 Marks)
10 a. Explain the cost saving techempues in planning design and construction.
b. Write the difference betpech conventional and alternative building materials.

Sixth Semester B.E. Degree Examingtion, JunefJuly 2019 Water Resource Management

Time: 3 hrs.
Max. Marks: 80

(08 Marks)
a. Explain water batace equation and its importanee.
(08 Marks)
b. Explain the processef 'Hydrologic Cycle' dong with representative diagram.
(08 Marks)

Module-2

3 a. Explain detail the necessity of water resources planning and management.
(08 Marks)
b. Writ a detailed note on post planing and management hssues to be addressed in case of a river valley development project
(08 Marks)

4 a. What are the planning ang management aspects in case of watergresource development project?
(06 Marks)
b. Explain in detail the following:
i) Top-down appoach of water resource planning and hanagement.
ii) Demand bettom-up appreach of water resource management.
(10 Marks)

Module-3

5 a. Analye the four basic prinoples of "Integrated Water Resources management" recominded as per Dublin's hternational conference on 'Water and Environment' (1992).
(10 Marks)
b. Aomment on the 'Role ofovernment' in Poviding 'Enabling Environment' for achieving iptegrated water resource management inour country.
(06 Marks)

6 a. Bring out the vantages/disadantages of private sector involvement in the field of water resources nazagement.
(08 Marks)
b. Explain the process of 'integfated water resources management' involving integration of natural water system and human system.
(08 Marks)

Module-4

7 a. Elaborate the salient features included in the 'National Water Policy (2002)' and discuss the water sector refinm needed to be adopted in India.
(10 Marks)
b. Discuss the roter of 'Water user associations' and its effectiveness for effective water governance and management of water resources.
(06 Marks)

OR

8 a. Write a detailed note on existing legal framework for watend constitutional provisions for water usage by the citizens of India.
(08 Marks)
b. Elaborate the role of local institutions and its importeg for good water governance.

Module-5

9 a. Define the term 'Rain Water Harvesting Waborate Rural technological systems being adopted for water conservation.
(08 Marks)
b. Explain the design principles for small water harvesting structures feg a micro catchment.
(08 Marks)

10 a. What is ground water recharge with neat sketches explain
i) Basin method and ii) it method of Ground Water recharge.
(10 Marks)
b. Explain the importance of water harvesting and conservation along with basic principles involved in the process.
(06 Marks)

Sixth Semester B.E. Degree Examination, June/July 2019 Numerical Methods and Applications

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Solve $\mathrm{x}^{3}+2 \mathrm{x}^{2}+10 \mathrm{x}-20=0$ by Newtên-Raphson method with initial approximation as 1.2 . Carryout calculations upto 4 decimals.
(08 Marks)
b. Solve the following system of linear simultaneous equations by Gauss-Elimination method. $3 x+y-z=3$
$2 x-8 y+z=-5$
$x-2 y+9 z=8$.
(08 Marks)
OR
2 a. Apply Gauss -Stedel method upto 5 iterations to solve the following equations. Use initial approximation as $(0,0,0)$.
$2 x_{1}-x_{2}+x_{3}=5$
$x_{1}+3 x_{2}-2 x_{3}=7$
$x_{1}+2 x_{2}+3 x_{3}=10$.
(08 Marks)
b. Using Gauss-Jordan method, find the inverse of the matrix ' A '.
$A=\left[\begin{array}{lll}2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5\end{array}\right]$.
(08 Marks)

Module-2

3 a. Fit a polynomiat of degree three Asing Newton's forward differences formula for the following values.

$x:$	3	4	5	6
$y:$	6	24	60	120

(08 Marks)
b. Use Lagrange's interpelation formula to fit a polynomial to the following data. Hence find (-2).

$\mathrm{x}:$	-1	0	2	3
$\mathrm{y}:$	-8	3	1	2

(08 Marks)

OR

4 a. Find Newtons divided differeaces polynomial for the data in the polynomial.

$x: y$	-3	-1	0	3	5
$f(x):$	-30	-22	-12	330	3458

(08 Marks)
b. The following values of x and y are given. Find the cubic splines. Hence evaluate $y(1.5)$. Take $\mathrm{M}_{0}=\mathrm{M}_{3} \neq 0$.

$x:$	1	2	3	4
$y:$	1	2	5	11

(08 Marks)

Module-3

5 a. Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ using both trapezoidal and Simpson's $1 / 3^{\text {rd }}$, rule. Take $\mathrm{h}=1$.
(08 Marks)
b. The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds. Find the initial acceleration using entire data:

Time ' t ' (sec)	0	5	10	15	20
Velocity 'V' $(\mathrm{m} / \mathrm{s})$	0	3	14	69	228

(08 Marks)

OR

6 a. Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}}$ correct to three decinal places using Romberg's method. Use trapezoidal rule to evaluate the integral.
(08 Marks)
b. Using three point Gaussian quadrature formula, evaluate $\int_{0.2}^{1,5} \mathrm{e}^{-x^{2}} \mathrm{dx}$.
(08 Marks)

Module-4

7 a. Using forth order Runge - Kutta method, selve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $\mathrm{x}=0.2$ and 0.4 .
(08 Marks)
b. Given $\frac{d y}{d x}=x^{2}(1+y)$ and $y(1)=1, y(1.1)=1.233, y(1.2)=1.548, y(1.3)=1.979$, evaluate y(1.4) by Adams - Bashforth method.
(08 Marks)
OR
8 a. Using modified Euler's method, find $y(0.2)$. Given $y^{\prime}=y+e^{x}, y(0+0$ 耳 f ake $\mathrm{h}=0.2$.
(08 Marks)
b. Using Milne's method find $y(4.5)$, given $5 \mathrm{x}^{\prime}+\mathrm{y}^{2}-2=0$. Given $\mathrm{y}(4)=1, \mathrm{y}(4.1)=1.0049$, $y(4.2)=1.0097, y(4.3)=1.0143, y(4.4)=4.0187$.
(08 Marks)

Module-5

9 Given the values of $u(x, y)$ on the boundary of the square in Fig.Q9, evaluate the function $u(x, y)$ satisfying the Laplace equation $\nabla_{u}^{2}=0$ at the pivotal points of this figure in Fig.Q9. Use Gauss Seidel method for iterative calculations.
(16 Marks)

Fig.Q9
OR
10 a. Given the general classification of second order partial differential equations. (06 Marks)
b. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, t \geq 0$. Given that $u(x, 0)=20, u(0, t)=0$, $\mathrm{u}(5, \mathrm{t})=100$. Compute ' u ' for the time step with $\mathrm{h}=1$ by Crank-Nicholson method.
(10 Marks)

$15 C V 71$

Seventh Semester B.E. Degree Examination, June/July 2019 Municipal and Industrial Waste Water Engineering

Time: 3 hrs.
Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Any missing data can be assumèd.

Module- 1

1 a. Define sanitation. Mention ddyatages and disadvantages of different methods of sewage disposal.
(08 Marks)
b. Name different types of sewage system with their advantages and disadvantages. (08 Marks)

OR

2 a. With sketch explath shapes of sewers.
豙
(08 Marks)
b. Draw a neat plation shing house drainage connections with labeling parts.
(08 Marks)

Modüle- 2

3 a. What is melf purification of stream? With sketch, explain oxygen sag curve.
(08 Marks)
b. With sketch explain zones of purification.
(08 Marks)

4 a. What is sewage sickness? Mention methods used to prevention of sewage sickness?
(08 Marks)
b. A wastewater effluent 0 豦 $50 \mathrm{l} / \mathrm{sec}$ with $\mathrm{BOF}=50 \mathrm{mg} / \ell$, dissolyed oxygen $=3.0 \mathrm{mg} / \mathrm{l}$ and temperature of $23^{\circ} \mathrm{C}$ enters a river where the flow is $28 \mathrm{~m}^{3} / \mathrm{sec}$ and BOD $=4.0 \mathrm{mg} / \ell$, D. $0=8.2 \mathrm{mg} /$ and temperature is $17{ }^{\circ} \mathrm{C} . \mathrm{K}_{1}$ of the waste is 0.1 pen day at $20^{\circ} \mathrm{C}$. The velocity of wate in the river downsteeam is 0.18 meter $/ \mathrm{sec}$ ând depth of 1.20 mts . Determine following after mixing of waste water with the rizer (i) Combined discharge (ii) BOD (iii) D. O (jv) Temperature.

Module-3

5 a. Draw a flow diagram of municipal waste treatment plant with their operation units.
(08 Marks)
b. Friefly explain characteristics of domestic waste water.
(08 Marks)
OR
6 a. List the difference between activated sludge process and trickling filters.
(08 Marks)
b. With sketch explain grit chamber and skimming tank.
(08 Marks)

Module-4

7 a. Mention the differences between domestic waste water and industrial waste water. (08 Marks)
b. Write note on:
i) Volume reduetion
ii) Strength duetion
iii) Neutralizatión
iv) Equalization
(08 Marks)

OR

8 a. What are the merits and demerits of municipal and nustrial waste water combined treatment methods.
(08 Marks)
b. Briefly explain methods used to removal of organicand inorganic salts from waste water.
(08 Marks)

Module-5

9 a. Explain with flow diagram, treatment option for distilleries plant.
(08 Marks)
b. With the help of flow chart, mention sources and characteristics of waste water from tannery.
(08 Marks)

OR

10 a. Explain with flow diagram, treatment option for sugar mills
(08 Marks)
b. With the help of flow chartmention sources and characteristics of waste water from pharmaceutical industry ${ }_{6}$
(08 Marks)

15CV72

Seventh Semester B.E. Degree Examination, June/July 2019 Design of RCC and Steel Structures

Time: 3 hrs.
Note: 1. Answer any TWO full questions, hoosing one full question from each module.
2. Use of IS456, IS800, IS3370,SP(6)-steel tables is permitted.
3. Any missing data may beassumed suitably.

Module - 1

1 a. Name the different typerof retaining walls.
(04 Marks)
b. Design a combined footing for two interior colunns carrying axial loads 1000 kN and 1200 kN . Column An $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ in size and column B is 450 mm in diameter. They are reinforced with 20 mm bars and are spaced 4 m centre to centre as for a bearing capacity of the soil is $120 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 mix and Fe 415 grade steel. Sketch it.
(36 Marks)
OR
2 a. Name the different classification of liquid retaining structures,
(04 Marks)
b. Roof of 8 m wide hall is supported on a portal frame spaced at 4 m intervals. The height of the portal frame is 4 m . The continuous slab is 120 mm thick. Live load of roof is $1.5 \mathrm{kN} / \mathrm{m}^{2}$, SBC of soil is $150 \mathrm{kN} / \mathrm{m}^{2}$. The columns are connected with a plinth beam and the base of the column may be assumed fixed. Design the slab, column, beam members for the columns of the portal frame. Use M20 and Fe415 grade steel. Sketch the details.
(36 Marks)

Module 2

3 a. Name any 4 various types of roof trusses.
b. Design a welded plate girder for an effective span of 20 m to support a Udl of $80 \mathrm{kN} / \mathrm{m}$ in addition to a pair of point loads of 870 kN each of 5 m from end of beam (10 m apart @ center), Design the plate girder.
(36 Marks)

OR

4 a. What are the advantages of plate girder over tusses?
(04 Marks)
b. Design a simply suppofted crane girder for the following data. The girder is electrically operated. Take yieldstress of steel as 250 MPa .
i) Span of the erane girder $=20 \mathrm{~m}$
ii) Span of the gantry girder $=7 \mathrm{~m}$
iii) Capacity of the crane $=250 \mathrm{kN}$.
iv) Self weight of crane excluding crab $=200 \mathrm{kN}$
v) Weight of crab $=60 \mathrm{kN}$
vi) Wheel base distance $=3.4 \mathrm{~m}$
vii) Minimum hook approach $=1.1 \mathrm{~m}$
viii) Self weight of raii $=0.3 \mathrm{kN} / \mathrm{m}$
ix) Height of rall $=75 \mathrm{~mm}$.
(36 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

CBCS SCNEME
 USN

 Seventh Semester B.E. Degree Examination, June/July 2019 Hydrology and Irrigation Engineering

15 CV 73

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FUE full questions, choosing ONE futh question from each module.

1 a. Define precipitation. Explain various forms of precipitation.
(05 Marks)
b. Explain with a neat sketeh, symon's rain gauge.
(06 Marks)
c. Rain gauge station ' X ' did not function for a part of a month during which a storm occurred. The storm produced rain fall of 84,70 and 96 mm at three surrounding station's A, B and Crespectively. The normal annual rainfalls at the stations $\mathrm{X}, \mathrm{A}, \mathrm{B}$ and C are respectively $770,882,736$ and 944 mm . Estimate the missing rainfall at station X .
(05 Marks)

OR

2 a. Explain forton's engineering representation of hydrologic cycle, with a neat sketch.
(08 Marks)
b. Descrite double mass curve techniques used to check wonsistency of rainfall data and adjust rainfall records.
(08 Marks)

Module-2

3 a. Define evaporation, with a neat sketch, explain measurement of evaporation using ISI standard pan.
(08 Marks)
b. Distinguish between the potential and actual evapotraspiration ($\mathbf{4}$ Marks)
c. Explain the factors affecting infiltration capacity.
(04 Marks)

OR

4 a. Explain how the evapotranspiraton can be estimated ising the Blaney - Criddle method.
b. With the neat sketch, exp fainsouble ring infiltremeter.
(05 Marks)
c. A seven hour storm produced the following rainfall intensities (in $\mathrm{mm} / \mathrm{hr}$) at half an hour interval over a basiur of farea $1830 \mathrm{~km}^{2}$. \&wour

$$
4,9,20,1813,11,12,2,8,16,17,13,6 \text { and } 1
$$

If the corresponding observed run off is 36.6 million m^{3}, estimate the ϕ - index for the storm.

(06 Marks)
Module-3
5 a. Define runoff. Enlist the factors affecting runoff.
(04 Marks)
b. Describe any tow methedsof separating the base flow from total runoff.
(04 Marks)
c. The ordinates of $4 \mathrm{~h} \mathrm{UH} \mathrm{m} \mathrm{m}^{3} / \mathrm{sec}$ is given at a time interval of 2 h after separating from the base flow:

$$
0,12.52,21.32,23.54,17.84,14.79,12.18,10.04
$$

$$
8.26,6.51,4.98,3.95,3.05,2.26,1.60,1.07,0.53,0
$$

Derive the 8 Ih unit hydrograph.
(08 Marks)

OR

6 a. Define unit hydrograph. What are the assumptions underlying the unit hydrograph theory? How do they limit the applicability of unit hydrograph?
(08 Marks)
b. Given below are the ordinates of a 4 h unit hadregraph of a basin in $\mathrm{m}^{3} / \mathrm{sec}$ at one hour intervals :

$$
4,25,44,60,70,61,52,45,38,32,27,22,18,14,11,8,6,4,2,1
$$

Construct the s-curve hydrograph using the 4 h UH. Hence derve the 2 hour unit hydrograph. Area of the basin is $195.84 \mathrm{~km}^{2}$.
(08 Marks)

Module-4

7 a. Define the term irrigation. Briefly describe the factors whichnecessitate the irrigation.
b. Write a note on : flow and liff frigation.
(04 Marks)
c. Explain in detail irrigation efficiency and add a note en crop seasons of India.
(04 Marks)
(08 Marks)

OR

8 a. Define : duty, celta and base period. Derive the relationship between them.
(05 Marks)
b. Write a note on Bandhora irrigation.
(03 Marks)
c. A water caurse has culturable commandedarea of 2600 hectares, out of which the intensities of irrigation for perennial sugar - cane and rice crops are 20% and 40% respectively. The duty for these crops at the head of water course are 750 hectares/cumes and 1800 hectares/ cumes respectively. Find the diserarge required at the head of water course if the peak demand is 120% of the average requirement.
(08 Marks)

Module-5

9 a. Define canal. Explain dfferent types of canal based on alignment.
(08 Marks)
b. What is meant by design of canal? Bring gut the difference between Kennedy's and lacey's theory.
(08 Marks)
OR
(08 Marks)
10 a. With a neat sketch, explain zones of storage in a reservoir.
b. A channel section has to be designed for the following data :

Discharge $\mathrm{Q}=30$ cumes
Silt factor $\mathrm{f}=1.00$
Side slope $=\frac{1}{2}: 1$
(08 Marks)

Gecs

 Seventh Semester B.E. Degree Examination, June/fuly 2019 Ground Water and Hydraulics

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the significance of ground water compare to surface water.
(04 Marks)
b. Explain the perched aquifer withneat sketches.
(04 Marks)
c. Define the vertical distribution of ground water with neat sketches.
(08 Marks)

OR

2 a. Describe confined and unconfined aquifers with neat sketches.
(12 Marks)
b. Define the following:
i) Aquifer
ii) Aquifuge
iii) Aquiclude
iv) Aquitard
Modile-2
(04 Marks)

3 a. Describe the Darcy's law with neat sketches.
(10 Marks)
b. An artesian aquifer 20 m thick has a porosity of 20% and bulk modulus of compression $10^{8} \mathrm{~N} / \mathrm{m}$. Estimate the storage coefficient of the aquifer. What fraction of this is attributable to the expansibility of water? Unit weight of wateris $9810 \mathrm{~N} / \mathrm{m}^{3}$. Bulk modulus of elasticity of water, $\mathrm{K}_{\mathrm{w}}=2.1 \mathrm{GN} / \mathrm{m}^{2}=2.1 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$.
(06 Marks)

4 a. Explain the following.
i) Porosity
iii) Specific retention
ii) Specific yield
(v) Transmissibility
(08 Marks)
b. An aquifer has an average thickness of 60 m and an areal extent of 100 ha. Estimate the available ground water storage if
i) The aquifer is unconfined and the fluctuationshaground water table is observed as 15 m .
ii) The, aquifer is confined and the piezometric head is lowered by 50 m which drains half
the thickness of theaquifer. Assume a storage coefficient of 2×10^{-4} and a specific field
ii) The aquifer is confined and the piezometric head is lowered by 50 m which drains half
the thickness of theaquifer. Assume a storage coefficient of 2×10^{-4} and a specific field of 16%.

OR

(08 Marks)

Module-3

5 a. Describe steady radial flow in unconfined aquifer.
(08 Marks)
b. A 30 cm wefl fully penetrates a conphed aquifer 30 m deep. After a long period of pumping at a rate 02200 lpm , the draw down in the wells at 20 and 45 m from the pumping well are found to be 2.2 and 1.8 m respectively. Determine the transmissibility of the aquifer. What is the drawdown in the pumped well?
(08 Marks)

OR

6 a. Explain Chow's method in un-steady radial flow into a well.
(08 Marks)
b. A 30 cm well penetrates 50 m below the static water level. After a long period of pumping at a rate of 1800 lpm. The drawdown in the wells at 15 and 45 m from the pumped well were 1.7 and 0.8 m respectively. Determine the transmissibility of the aquifer. What is the drawdow in the pumped well?
(08 Marks)
1 of 2

Module-4

7 a. Describe ground water exploration using seismic method
b. Write short notes on:
i) Electrical logging
ii) Sonic logging

OR
8 a. Describe ground water exploration using electrical resistivity methodi
b. Write short notes on:
i) Radioactive logging
ii) Induction logging

9 a. Describe the construction of Dug well with neat sketches.
b. Describe the different types of shallow based wells,

10 a. Write short notes ont
i) Cable tool method
ii) Diamond dpilling

OR

(06 Marks)
b. Describe the different methods for water hârvesting recharge structures.
(04 Marks)
(12 Marks)

 Seventh Semester B.E. Degree Examination, June/July 2019 Structural Dynamics

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

iii) Free and forced vibration

iv) Resonance
(06 Marks)
b. The vibration of an elastic system eonsisting of a weight, $W=200 \mathrm{~N}$ and a spring with stiffness $\mathrm{k}=15 \mathrm{~N} / \mathrm{mm}$ is to be damped with viscous damping so that the ratio of two successive amplitude is 1.0 to 0.75 . Determine:
i) Natural frequency
ii) Damping ratio anddamping coefficient
iii) Amplitude after 1 oscillation if the first amplitude of free vibration is 5 mm . $\mathbf{1 0}$ Marks)

OR

2 a. Explain the logatithmic decrement and defive the expression for the same.
(06 Marks)
b. A damped spring mass system has mass of 0.1 tonne, stiffness of $10 \mathrm{kN} / \mathrm{m}$ and damping coefficient $790 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. Determine undamped, damped frequency and period of oscillation. If mass is subjected to the initial displacement of 40 mm and velocity of $500 \mathrm{~mm} / \mathrm{s}$. What is the displacement at 1 sec ? Also caleulate velocity at 2 sec .
(10 Marks)

Module-2

3 a. Explain the dependence of transmissibility on frequency ratio and the damping ratio with a qualitative graph relating to all the above three quantities. What is the range of frequency ratio for which the isolation is effective?
(08 Marks)
b. A machine weighing 600 N is supported by spring of stiffness $\mathrm{K}=20 \mathrm{~N} / \mathrm{mm}$ and damper of damping coefficient, $\mathrm{C}=0.01 \mathrm{~N}$-See $/ \mathrm{mm}$. A harmonic force of amplitude 20 N is applied. Compute the resonant amplitude.
(08 Marks)

OR

4 a. A radio set of mass 20 kg is to be isolated from a machine vibrating with an amplitude of 0.05 mm at 500 cycles perminute (Cpm). The radio set is mounted on four isolators, each haviang a spring constant of $31400 \mathrm{~N} / \mathrm{m}_{\text {and }}$ anding of $392 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. Determine the amplitude of vibration ofivadio set.
(08 Marks)
be Derive the expression for Duhamul's integral as an expression for response due to general dynamic loading
(08 Marks)

5 For the sheat building shown in Fig.Q5. Compute the natural frequencies and mode shapes. Also draw the mode shapes.

OR

 $k_{2}=20 \mathrm{~N} / \mathrm{m}$. Determine two natural frequencies of vibration and mode shapes.

Fig.Q6
(16 Marks)

Module-4

7 Compute the response dueto harmonic loading for the shear frame shown in Fig.Q7. Given $\mathrm{EI}=24 \times 10^{6} \mathrm{~N}-\mathrm{m}^{2}, \mathrm{~m}=500 \times 10^{3} \mathrm{~N}-\mathrm{S}^{2} / \mathrm{m}, \mathrm{P}(t)=0, \mathrm{P}_{2}(\mathrm{t})=(10000 \sin 30 \mathrm{t}) \mathrm{kN}$, storey height $=3 \mathrm{~m}$.

Fig.Q7 + \#he
(16 Marks)

8 Compute the response due to harmenic loading for the shear building shown in Fig.Q8.

$[\mathrm{C}]=\left[\begin{array}{cc}175.23 & -75 \\ -75 & 18.28\end{array}\right] \times 10^{3} \mathrm{~N}-\mathrm{s} / \mathrm{m}_{\mathrm{m}} \quad \mathrm{w}_{\mathrm{n}}=\left\{\begin{array}{l}9.714 \\ 30.58\end{array}\right\} \mathrm{rad} / \mathrm{s}$
$[\phi]_{1}=\left[\begin{array}{l}0.81 \\ 1.00\end{array}\right] \quad[\phi]_{2}=\left[\begin{array}{c}-0.87 \\ 1.00\end{array}\right]$
$P_{1}(t)=0, P_{2}(t)=(10000 \sin 30 t) N$

Fig.Q8
(16 Marks)

Module-5

9 a. Explain the lumped mass and consistent mass formulation for vibration of beam. (08 Marks)
b. Derive the governing differential equation of motion fore flexural vibration of beam.
(08 Marks)

OR

10 Compute the lowest natural frequency of simply supported beam of span 2 m and mass per unit length $500 \mathrm{~N} / \mathrm{m} . \mathrm{EI}=833.33 \times 10^{9} \mathrm{~N}-\mathrm{mm}^{2}$. Consider beam as a single element as indicated in Fig.Q10.

(16 Marks)

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi
\square

Seventh Semester B.E. Degree Examination, June/July 2019 Urban Transportation and Planning

Time: 3 hrs .
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module
 Module-1

1 a. Explain the system approach to fransport planning using aflow chart.
b. Explain the various urban transport problems.
(10 Marks)
(06 Marks)

OR

2 a. Explain the features ofBRTS.
b. Explain briefly the travel demand.
c. Write the types of transit system and explain any two.
(04 Marks)

Module- 2

3 a. Explain zohing and study area.
b. Mention the difficult types of sampling techniques.
(10 Marks)
(06 Marks)

4 a. Write a note on :

OR

i) Road side interviews
ii) Commercial vehicle surveys
iii) Home interview surveys.
(12 Marks)
b. Explain the inter relationship between income population and employment.
(04 Marks)

Module-3

5 a. Explan in detail the various factors governing trip generation.
(08 Marks)
b. What is multiple linear regression analysis and mention the assumptions made.
(08 Marks)

OR

6 a. What is trip distribution and mention the methods of trip distribution.
(04 Marks)
b. Explain category analysis and mention the assumptions made.
(04 Marks)
c. Let the trip rate of zone is explained by the house hold size done from field survey. If was found that the household sizes are $1,2,3,4$, the trip rates of the corresponding house hold is shown in the table below s.

Household Size	1	2	3	4
trips /day	2	3	4	5
	3	5	7	8
	3	4	4	5
IY				8

1 of 2
(08 Marks)

Module-4

7 a. Briefly explain intervening opportunities model and competing opportunity model.
(06 Marks)
b. The total number of trips produced in and attracted to the three zones $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ of a survey area in the design year are tabulated as follows

Zone	Trips profuced	Trips attracted
X	2500	3800
Y	-5800	5500
Z	4500	5500

It is known that the trip between two zones are inversely propositional to the second power of travel time between the zones, which is uniformly 20 minutes, of the trip interchange between zones Y and Z know to be 1000 , calculate the trip interchange between X and Y , X and Z and Z and Y.
(10 Marks)

OR

8 a. What are the factors affecting modal split?
(08 Marks)
b. Explain in detail the opportunity model relating to synthetic method.
(08 Marks)

Module-5

9 a. Define trip assignment and explait the various application of the trip assignment.
(10 Marks)
b. Mention the different assignment techniques.

OR
10 a. Write a brief note on diversion curves.
b. Explain in detail the features of Lowry model.

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question frem each module.

1 a. Define following :

Module-1

i) Repair
ii) Retrofitting
iii) Rehabilitation
iv) Deterioration.
(04 Marks)
b. Explain the mechanism of deteriotation of concrete structares.
(06 Marks)
c. Define Distress. Explain the types of distress in concrete structures.
(06 Marks)

OR

2 a. Explain physicaland chemical causes and effects of deterioration of concrete with flow chart.
(08 Marks)
b. Write a short on stilphate attack.
(04 Marks)
c. Write the external and internal factors contributing to corrosion in concrete structure.
(04 Marks)

3 a. Explain plastic shrinkage cracks in concrete strucure.
(06 Marks)
b. Brief the damage assessment procedure with help offlow chart.
(10 Marks)

4 a. List the destructive, Non-Destructive ant semi-destructive testing system on concrete structure.
(08 Marks)
b. Explain the causes of surface cracking after hardening concrete with help of flow chart.
(08 Marks)

Module-3

5 a. Explainthe influence of design and constructionerrors on durability of concrete.
(05 Marks)
b. Explain the corrosion mechanism in reinforced concrete structure with the help of sketch.

ane
(08 Marks)
6. Write a short note on corrosion inhibitors
(03 Marks)

OR

6 a. Explain the effects of cover thickness and cracking on durability of concrete.
(08 Marks)
b. Explain the methods of corrosion protection in concrete structures.
(08 Marks)

Module-4

7 a. Explain the importanee of maintenance needs for retrofitting technique.
(04 Marks)
b. List the types of $\mathfrak{j a c k i n g}$ technique. Explain the RCC jacking system for beam and column with sketch.
(12 Marks)

1 of 2

OR

8 a. Define maintenance. Explain types of maintenance:
(06 Marks)
b. Brief the near surface mounted (NSM) technique in retrofitting structures.
c. Write the advantages of shear key in jacketing technique.

Module- 5

9 a. Explain Gunite and shot Crete enoxy injection in concrete strueture.
b. Explain the process of repaining cracks by mortar.
c. Write a short note on Resin.

10 Write a note on:
a. Rust Elimination
b. Concrete Chemical
c. Sisal Fibres
d. Cathodio Protection.

USN
 Time: 3 hrs .

Eighth Semester B.E. Degree Exampunation, June/July 2019 Quantity Surveying and Corftracts Management

Note: Answer any FIVE full questions, (hyosing ONE full question from each module.
1 The details Module-1
cost of the following items of 1 , angs are shown in the Fig.Qs. Estimate the quantities and
i) Earth work excavatipnor foundation in ordinatfosoil at Rs. $300 / \mathrm{m}^{3}$.
ii) Cement concretesed 1:4:8 for wall foundation ieat Rs.2500/m ${ }^{3}$
iii) SSM (Size Stone Masonry) in CM 1:8 for \%ootings and basement foundation at
iv) First class BBM (Burst Brick Masolity) work for super structure in CM 1:6 at
v) $\operatorname{RQCl} 1: \frac{1}{2}: 3$ root slab at Rs. $3000 \mathrm{~m}^{3}$.
(16 Marks)

The details of septic tank are shown in the Fig.Q3. Estimate the quantities for the following items of work and cost of abstract:
i) Earthwork in excavation for foundfifien hard soil at Rs. $400 / \mathrm{m}^{3}$
ii) PCC 1:4:8 for bed concrete at $\mathrm{B} \$ 2500 / \mathrm{m}^{3}$
iii) BBM in CM 1:4 for side walls
iv) $\operatorname{RCC} 1: 1 \frac{1}{2}: 3$ for cover slag $\%$ Rs. $3001 / \mathrm{m}^{3}$
(16 Marks)

Estimate the quantities andrcost of earth work for a portion of the road form the following data. Formation width of the road is 10 m side slopes are $2: 1$ in filling and $1.5: 1$ in cutting. The cost of filing is Rs. $1807 \mathrm{~m}^{3}$ and cutting Rs. $120 / \mathrm{m}^{3}$.

Ch. (m)	0	40	80	120	160	200	240	280
RL of GL (m)	100.60	100.20	99.80	100.20	100.80	101.90	102.40	102.50
RL of FL (m)	101.00	¢Raising Gradient I in $400 \rightarrow$						

(16 Marks)

Module-3

5 Wite the detailed technical specifications for the following
i) Earth work excavation for foundation
ii) Burnt Brick Masonary in CM 1:6
iii) Plastering in CM $1: 6$ to interior surface

尞
iv) RCC work proportion 1:2:4.

Carryout the rate analysis for the following:
i) Earth work excavation forfoundation in ordinary soil
ii) P.C.C. 1:4:8 for foundadtan asing 40 mm and down size aggregate.
iii) Coursed rubble masonry if CM 1:6.
iv) RCC $1: 1 \frac{1}{2}: 3$ formof lab.
(16 Marks)

Modules

1 Explain the procedure of tendering and awdof works in civil engineering projects.
(16 Marks)

8 What are the different types of contacts? Explain any thetypes of contracts.
(16 Marks)

Write short notes about ay
i) Performance security
ii) Liquidated damges
iii) Contract anosement
iv) Breach of ontract
v) Mobilization and equipment advances.

10 a. Whatis the difference betwo the cost, estimate and value?

OR

(16 Marks)
(06 Marks)
(10 Marks)
Module-5

$$
5
$$

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

Eighth Semester B.E. Degree Examination, June/July 2019 Design of Pre-Stressed Concrete Elements

Time: 3 hrs.
Note: 1. Answer any FYVE full questions, choosing ONE fult question from each module.
2. Use of IS 1343 is permitted.

Module- 1

1 a. Define pre-stressed concrete. Write any three differences between pre-tensioning and posttensioning.
(05 Marks)
b. Explain with neat sketch Gifford Udal system of pre-stressing.
(05 Marks)
c. What is pressure line? plot the pressure line for a simply supported rectangular beam of size bxh subjected to uniformly distributed load and pre-stressed by a force P at a constant eccentricity of $\mathrm{h} / 6$ such that bottom fibre stress at midspan due to all loads and P equal to zero

(06 Marks)

2 a. Explain the concept of oad balancing in pre-stressed concrete destgn.
(06 Marks)
b. A concrete beam of symmetrical I section of simply supported span 10 m has width and thickness of flange 250 mm and 80 mm respectively. thickness of web is 80 mm and overall depth of section is 500 mm . The beam is pre-stressed by a parabolic cable with an eccentricity of 150 mm below centriodal axis at midspan and concentric at supports. The initial and final pre-stressing force 1 the cabl eis 250 kN and 200 kN respectively. The beam supports a live load of $3 \mathrm{kN} / \mathrm{m}$. Calculate the fibre stress in concrete at transfer and at working loids sketch the stress distribution.
(10 Marks)

Module-2

3 a. List the various types of losses in pre-stressed concrete members. Explain the types of loss of pre-stress in posttensioned members only.
(06 Marks)
b. A PSC beam $200 \mathrm{~mm} \times 300 \mathrm{~mm}$ is pre-stressed with wires of area $300 \mathrm{~mm}^{2}$ located at an eccentricity of 100 mm below centriodal axis at midsapn and zero at supports. Initial prestress in the wires is $1 \mathrm{kN} / \mathrm{mm}^{2}$. The span of the beam is 10 m . Calculate the loss of prestress and total percentage of loss of pre-stress in wires if i) the bema is pre-tensioned ii) the beam is post tensioned ensing the following data :
Grade of concrete $\mathrm{M}_{40}, \mathrm{E}_{\mathrm{S}}=210 \mathrm{kN} / \mathrm{mm}^{2}$ shrinkage strain in concrete for pre tensioned member $=300 \times 10^{-6}$. Age of concrete at transfer for post tensioned beam $=8$ days, creep coefficient $=1,6$. Slip at anchorage $=2 \mathrm{~mm}$ coefficient of friction between concrete and cable duct $=0.55$. Friction coefficient for wave effect $=0.0015 / \mathrm{m}$.
(10 Marks)

OR

4 a. What are the factors affecting deflection of a PSG beam?
(04 Marks)
b. A PSC beam span supported over a span f 8 m is of rectangular section of size $150 \mathrm{~mm} \times 300 \mathrm{~mm}$. The beam is pre-stressed by a parabolic cable having an eccentricity of 80 mm below centriodal axis at mid span and 30 mm above the centriodal axis at the ends. The intial pre-stressing force in the cable is 350 kN . The beam supperts a concentrated load of 10 kN at midspan and uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ over the entire span. Grade of concrete is M_{40}. Estimate the following deflection :
i) Short term deflection due to pre-stress and self weight
ii) Long-term deflection due to pre-stress, self weight and imposed loads, allowing 20% loss of pre-stress and taking creep coefficient of 1.80
iii) Check the deflection as per IS 1342-1980 requirements.
(12 Marks)

Module-3

5 a. A post tensioned unbounded beam section $120 \mathrm{~mm} \times 300 \mathrm{~mm}$ is pre-stressed by 7 wires of 5 mm diameter with an effective cover of 50 mm and effective stress of $1200 \mathrm{~N} / \mathrm{mm}^{2}$. The beam is of 7.5 m span. If M_{40} concrete is used and $\mathrm{f}_{\mathrm{p}}=1600 \mathrm{MPa}$, find the ultimate flexural strength of the section.
(08 Marks)
b. A post tensioned bounded Tee section has a flange width of 800 m and thickness of 250 mm . The thickness of web is 200 mm . The area of high tensile wire is $4000 \mathrm{~mm}^{2}$ located at 1200 mm from top of flange. The characteristie strength of steel and concrete are 1500 $\mathrm{N} / \mathrm{mm}^{2}$ and $40 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Calculate the ultimate moment capacity of the section using IS 1343 recommendation.
(08 Marks)

OR

6 Design a pre-stressed concrete beam as Type-1 member to carry a superimposed load of $12 \mathrm{kN} / \mathrm{m}$ over a simply supported span of 25 m . The permissible stress in compression for concrete at transfer and working loads are $14 \mathrm{~N} / \mathrm{mm}^{2}$ and $12 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Initial stress in pre-stressing cable is $1000 \mathrm{~N} / \mathrm{mm}^{2}$. Loss of pre-stress is 20%. Adopt Freyssenet cables each of 12 wires of 5 mm diameter.
(16 Marks)

7 a. Explain different methods of improving shear resistance of PSC members.
(05 Marks)
b. Explain the mechanism of shear failure in PSC beams.
(05 Marks)
c. The support section of PSC beam $120 \mathrm{~mm} \times 250 \mathrm{~mm}$ is required to carry an ultimate shear force of 70 kN . The compressive stress at the centriodal axis is 5 MPa and $\mathrm{f}_{\mathrm{ck}}=40 \mathrm{MPa}$, $\mathrm{f}_{\mathrm{y}}=415 \mathrm{MPa}$ cover to reinforcement $=50 \mathrm{~mm}$. Design the suitable shear reinforcement at the section as per IS - 1343 recommendation.
(06 Marks)

8 a. Differentiate between web shear, flexural and flexure shear cranks in PSC members with neat sketches.
(06 Marks)
b. A PSC beam $300 \mathrm{~mm} \times 1000 \mathrm{~mm}$ is subjected to a shear force of 500 kN under working loads near support section. The effective pre stressing force in the tendonis 800 kN . The cable is parabolic with zero eccentricity at suppent and 300 mm below centriodal axis at midspan. The span of the beam is 12 m . If M_{40} concrete is used estimate the principal tension in concrete at support section and if requited design the shear reinforcement.
(10 Marks)

Module-5

9 a. Write a note on anchorage zone stresses.
(05 Marks)
b. Explain end zone reinforcement.
(05 Marks)
c. The end block of a post tensioned beam $500 \mathrm{~mm} \times 1000 \mathrm{~mm}$ is pre-stressed 2 cables each comprising of 5 wires of 7 mm diameter. The cable is anchored by square anchor plates $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ with their centre loctaed 250 mm from the top and bottom edges of the beam. The jagking force in the cable is 3000 kN . Design a suitable anchorage zone reinforcement as per IS-1343 code provisions.
(06 Marks)

10 A pre tensioned rectangular beam of size $120 \mathrm{~mm} \times 240 \mathrm{~mm}$ is simply supported over a span of 6 m . The beam is prestressed by tendons carrying on initial pre-stressign force of 225 kN at a constan eccentricity of 40 mm . The loss of pre-stress is assumed to be 15%. The beam is incorporated in a cortposite T-beam by casting a top flange of 450 mm wide and 40 mm thick. Live load on composite beam is $8 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the resultant stress developed in the beam assuning the pre tensioned beam is unpropped during casting of top flange if the modulus of elasticity of the flange portion and the pre tensioned beam are $28 \mathrm{kN} / \mathrm{mm}^{2}$ and $35 \mathrm{kN} / \mathrm{mm}^{2}$ respectively. Also check the composite T-beam for limit state of deflection.

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

15CV831

Eighth Semester B.E. Degree Exammation, June/July 2019 Earthquake Engîneering

Time: 3 hrs .
Max. Marks: 80
Note: 1. Answer any EWE full questions, choosing
ONE full question from each module
2. IS1893-2015 code is permitted.
Module-1
1 a. Explain the concept of plate tectonic theory and withat neat figure explain the concept of elastic rebound theory.
(06 Marks)
c. How the classificatons of earthquakes are made?
(04 Marks)

2 a. Explain difference between magnitude and intensity. What are the isoseismals?
b. What are the different earthquake ground motion characteristics?
(08 Marks) ground displacement of 156 mm for surface wate taving a pertod of 20 secols Determine the surface wave magnitude.
(04 Marks)

Module 2

3 a. Derive and plot the response for SDOF system with free vibration undamped case.
(08 Marks)
b. Derive and plot the vibration DAF with damping and frequency ratio of an SDOF system subjected to hafrmonic excitation.
(08 Marks)

4 a. Explain the dynamic step by step dynamic response procedure for linear acceleration methờd.
(08 Marks)
b. Whât is response spectrum? And what ate the steps involved in construction of design spectrum.
(08 Marks)

Module-3

5 a. Explain the-diferent vertical irregutarities.
(05 Marks)
b. What are the Iessons learnt with references to seismic behaiour of structural damages during past earthquakes.
(05 Marks)
c. Illustrate with the neat sketches the problems associated with the configuration of building and its possible remedialmeasures.
(06 Marks)
OR
6 a. Summarize the different philosophy adopted in seismic design.
(06 Marks)
b. What are the different types of structural modules to simulate the seismic behaviour of a framed buildifg?
(05 Marks)
c. Explain the different code-based methods for seismic design.
(05 Marks)

Module-4

7 For an RCC-SMRF building frame for office, the seismic weights on the floors are W_{1} (roof) $=3000 \mathrm{kN}, \mathrm{W}_{2}=\mathrm{W}_{3}=\mathrm{W}_{4}=4200 \mathrm{kN}$. The storey heights are ground storey $=4.2 \mathrm{~m}$, other storey each of 3.2 m . The fuilding is founded on hard soil and situated in zone-IV. Find the seismic force by equivalent tateral force procedure.
(16 Marks)

OR

8 For the RCC-SMRF frame building with importance factor $=1$. Founded on soft soil and situated in Zone-V. Seismic weights on the floors are W_{3} (Roof) $=392 \mathrm{kN}, W_{2}=784 \mathrm{kN}$, $\mathrm{W}_{1}=1568 \mathrm{kN}$. Determine the seismic forces by dynamic analysis method. The free vibration results for the buildings are.
(16 Marks)

Natural'Period	Mode -1	Mode -2	Mode -3
(sec)	0.883	0.404	0.302
Reof	1.000	0000	1.000
$\mathbf{2}^{\text {nd }}$ FL	0.791	0.000	-0.791
$\mathbf{1}^{\text {s }} \mathrm{FL}$	0.250	-1.000	0.250

Modnite-5

9 a. Explain with neat figure of typical failure of RC framed structure.
(06 Marks)
b. Explain with neat sketches of the ductile detailing provisions for columns as per IS-code methods.
c. Explain the different methods of refrofitting of structures
(06 Marks)
(04 Marks)

10 a. Explain the different elastic properties of masonary structures.

b. Explain the major steps of the lateral load analysis of masonary building.
(06 Marks)
c. How to make stone masonry buildings earthouake resistant.

Eighth Semester B.E. Degree Examination, June/July 2019 Hydraulic Structures

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Explain different types of forces acting on a gravity dam with neat sketch.
(10 Marks)
b. Explain various types of failure modes in gravity dam.
(06 Marks)

2 a. Explain step by step the analytical procedure to be adopted for analyzing the stability of gravity dam.
(08 Marks)
b. Write a note on drainage galleries.

Module-2

3 a. Write neat sketch of the preliminary section of Earthen dams and explain components.
(08 Marks)
b. What are the causes of failure of Earthen Dams? Explain them with relevant sketches.
(08 Marks)

4 a. Explain types of Earthen Dams.
(08 Marks)
b. Explain how to determine phreatic line with filter using Casagrande's method.
(08 Marks)

Module-3

5 a. What is spillway? Explain spillway components.
(07 Marks)
b. Explain:
i) Free overall spillway
ii) Ogee spillway
iii) Energy dissipation devices
(09 Marks)

6 a. Design a suitable section for the overflow portion of a concrete gravity dam having the down stream face sloping at a slope of $0.7 \mathrm{H}: 1 \mathrm{~V}$ the design. Discharge for the spillway is 8000 cumecs the height of the spillway crest is kept at RL 204.0 m . The average river bed level at the site is 100 pm . The spillway length consist of 6 spans having clear width of 10 m each. Thickness of each pier may be taken to be 2.5 m .
b. Explain Khosla's theory and concepts of flownet.

Module-4

7 a. Describe the necessity of cross drainage works.
(06 Marks)
b. Explain types of cross drainage works.
(10 Marks)

OR

8 Design a suitable cross drainage work for following datat the crossing of a canal and a drainage.
Canal
Full supply discharge $=32$ cumecs
Full supply level $=$ RL 213.5 m
Canal bed level $=$ RL 212.0 m
Canal bed width $=20 \mathrm{~m}$
Trapezoidal canal section with $1.5 \mathrm{H}: 1 \mathrm{~V}$
Canal water depth $=1.5 \mathrm{~m}$
Drainage
High flood discharge $=300$ cumecs
High flood level $=210.0 \mathrm{~m}$
High flood depth $=2.5 \mathrm{~m}$
Ground level $=212.5 \mathrm{~m}$

Module-5

9 a. Explain the main functions of head and cross regulators.
(08 Marks)
b. Explain the necessity of canal falls.
(08 Marks)

10 a. Explain the types of canal fall.
(08 Marks)
b. Explain the types of canal outlets.
(08 Marks)
\square

Eighth Semester B.E. Degree Examipation, June/July 2019 Pavement Desigh

Time: 3 hrs.
Max. Marks: 80
Important Note : 1 . On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Note: 1. Answer any FHE full questions, choosing ONE full question from each module.
 2. Missing data, if any may be assumed.
 3. Use of relevant charts is permitted.

Module-1

1 a. Draw neat sketch of cross section of a flexible pavement and describe the functions of each layer.
b. Determine the deflectionvalues under a wheel loat of 60 kN and contact pressure $0.7 \mathrm{~N} / \mathrm{mm}^{2}$ in a homogeneousumess of soil at a depth of $Z=2.5$ a upto a radial distance of $r=5$ a. Take modulus of elasticify of subgrade as $8 \mathrm{~N} / \mathrm{mm}^{2}$, Sketch the deflection curve. Use Fig.Q.1(b).
(08 Marks)

2 a. Compare sakent features of flexble and rigid pavements.
(08 Marks)
b. A plate load test was carried out on subgrade using 300 mm diameter plate and corresponding to a deflection of 5 mm , the load sustained on the plate per unit area was $0.08 \mathrm{~N} / \mathrm{mm}^{2}$. The test was repeated on base course of thickness 300 mm and unit load sustained was $0.45 \mathrm{~N} / \mathrm{mm}^{2}$ at the same deflection. Find:
i) Elastic modulus of subgrade and the ratio EP/ES.
ii) What shoute be the thickness of base course as to sustain wheel load of 50 kN and contact plessure $0.6 \mathrm{~N} / \mathrm{mm}^{2}$ so that maximum deflection does not exceed 5 mm . Use Fig.Q.2(b).
(08 Marks)

Fig.Q.2(b)

Module-2

3 a. Explain what is trustyaction. What are the factors affecting frost action and what are the remedial measures?
(08 Marks)
b. Explain Equivalent Wheel factor (EWL). Calculate design repetitions for 20 years period for various wheel loads equivalent to 22.68 kN wheel load using the following survey data on a four laneroad
(08 Marks)

4 a. Design a highway pavement using McLeod method for a wheel load of 5100 kg with tyre pressure $6.5 \mathrm{~kg} / \mathrm{km}^{2}$. The plate bearing test conducted on subgrade soil using 30 cm diameter Plate yiefded pressure of $2.5 \mathrm{~kg}_{\mathrm{g} / \mathrm{cm}^{2}}$ after 10 load repefitions at 0.5 cm deflection. What will be the pavement thickness, If design deflection is taken as 0.35 cm ? Use Fig.Q.4a(i) and Fig.Q.4a(ii).

Fig.Q.4a(i)

Fig.Q.4a(ii)
2 of 3
b. Design the pavement by triaxial method using the following data: Wheel load $=51 \mathrm{kN}$, radius of contact area $=150 \mathrm{~mm}$
Traffic coefficient $=1.5$,
Rainfall coefficient $=0.9$
Design deflection $=2.5 \mathrm{~mm}$
E of subgrade $=10 \mathrm{~N} / \mathrm{mm}^{2}$
E of base course $=40 \mathrm{~N} / \mathrm{mm}^{2}$

E of 75 mm thick bituminous concrete surface $100 \mathrm{~N} / \mathrm{mm}^{2}$.
(08 Marks)

Module-3

a. List the general causes of flexible pavement failures and describe the failures in sub base and base courses.
(08 Marks)
b. Explain the step by step procedure of conducting Benkleman Beam deflection studies for evaluation of flexible pavement sufface condition.
(08 Marks)

OR

a. Briefly explain the typical types of flexible pavement failures.
(08 Marks)
b. Existing black top pavenept was tested using Benkleman beam. The observations recorded at a pavement temperature of $43^{\circ} \mathrm{C}$ are given beow Compute the thickness of bituminous concrete overlay taking allowable deflection as 1.25 mm , factor of subgrade moisture as content as 2 and acouracy 84%.

$$
\begin{equation*}
1.46,1.52,1.56,176,1.96,1.74,1.68,1.74,1.96,1.42,1.56,1.62 \mathrm{~mm} \tag{5}
\end{equation*}
$$

(08 Marks)

Module-4

7 a. As per 18C 58-2002, explain the procedure of design of rigid pavements.
(08 Marks)
b. Calculate the wheel load stresses at edge and corner regions of a CC pavement using modified equations and the following data: wheel $103=51 \mathrm{kN} \quad \mathrm{E}=3 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ $\mu=0.15$ pavement thickness $=180 \mathrm{~mm}$, radius of contact area $=150 \mathrm{~mm}$ and modulus of subgrade reaction $=0.06 \mathrm{~N} / \mathrm{mm}^{3}$.

OR

(as

KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

[^0]: KLE Dr. M.S. Sheshgiri College of Engineering \& Technology, Library, Belagavi

